Answer:
Zero
Explanation:
As force acting on the body is equal to the product of mass and acceleration.
Acceleration is equal to rate of change in velocity.
Here velocity is constant so acceleration is zero.
It means the net force acting on the vehicle is zero.
Answer:
Part A
Coriolis effect is used to describe how objects which are not fixed to the ground are deflected as they travel over long distances due to the rotation of the Earth relative to the 'linear' motion of the objects
Due to the Coriolis effect the wind flowing towards the Equator from high pressure belts in the subtropical regions in both the Northern and Southern Hemispheres are deflected towards the western direction because the Earth rotates on its axis towards the east
Part B
In the Northern Hemispheres, the winds are known as northeasterly trade winds and in the Southern Hemisphere, they are known as the southeasterly trade wind. Therefore, Coriolis effect has the same effect on the direction of the Trade Winds in the Southern Hemisphere as it does in the Northern Hemisphere
Explanation:
Answer:
Explanation:
Given that;
horizontal circle at a rate of 2.33 revolutions per second
the magnetic field of the Earth is 0.500 gauss
the baton is 60.1 cm in length.
the magnetic field is oriented at 14.42°
we wil get the area due to rotation of radius of baton is

The formula for the induced emf is




B is the magnetic field strength
substitute


The magnetic field of the earth is oriented at 14.42

we plug in the values in the equation above
so, the induce EMF will be


Answer:
K = 960 J
Explanation:
Given that,
Mass of a child = 20 kg
Mass of a sled = 10 kg
Speed of child on sled = 8 m/s
We need to find the kinetic energy of the sled with the child.
The total mass of child and the sled = 20 kg + 10 kg
= 30 kg
The formula for the kinetic energy of an object is given by :

Hence, the kinetic energy of the sled with the child is 960 J.
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s