Answer:
See detailed explanation.
Explanation:
Hello!
i. In this case, since the given chemical reaction is exothermic due to the negative change in the enthalpy of reaction, we infer that according to the mentioned principle, by lowering the temperature the reaction will shift rightwards and therefore the yield is increased; thus, you need a lower temperature than the specified.
ii. In this case, since the reaction has less moles at the products side, according to the mentioned principle it'd be necessary to rise the pressure in order to increase the yield, since the increase of pressure favors the reaction side with the fewest number of moles.
Best regards!
Answer:
100 mL
Explanation:
The reaction that takes place is:
- CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
First we <u>convert 500 mg of CaCO₃ into mmoles</u>, using its <em>molar mass</em>:
- 500 mg ÷ 100 mg/mmol = 5 mmol CaCO₃
Then we <u>convert 5 mmoles of CaCO₃ into HCl mmoles</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 5 mmol CaCO₃ *
= 10 mmol HCl
Finally we <u>calculate the volume of a 0.10 M HCl solution (such as stomach acid) that would contain 10 mmoles</u>:
- 10 mmol / 0.10 M = 100 mL
Answer:
The right objective is A I guess
Answer: The name of given molecule is
3-Methylpent-2-ene.
Explanation: First of all a carbon chain of five carbons was drawn. Then a double bond was made between carbon 3 and 4 (starting from left). A methyl group was drawn at middle carbon which is at position 3.
Molecule sketched was named as,
1) A longest chain containing double bond was selected and numbering was started from the end closest to double bond. Hence,
2-Pentene or
Pent-2-ene2) The position of substituent was specified before the parent name, Hence,
3-Methyl-2-Pentene or
3-Methylpent-2-ene