The Lewis structures in which there are no formal charges is the most stable. Hence, structure (b) is the more stable form of FNO2.
<h3>Lewis structure</h3>
The question is incomplete but I will try to answer you as much as I can. Now the equation is missing hence we can't numerically caculate the enthalpy chnage of the reaction from bond energies. However, we can do this using the formula; Σbond energy of reactants - bond energy of products.
Concerning the Lewis structures of FNO2, the most stable structure is structure (b) as shown in the image attached where the atoms have no formal charges.
Learn more about Lewis structure:brainly.com/question/4144781
Answer:
The answer is D. The concentrations are different and the reactions are different, so the cell potential is 0.00 volts.
Explanation:
A concentration cell is an electrolytic cell that is comprised of two half-cells with the same electrodes, but differing in concentrations. A concentration cell acts to dilute the more concentrated solution and concentrate the more dilute solution, creating a voltage as the cell reaches an equilibrium.
Mass of (NH₄)₂U₂O₇ : 410.05 kg
<h3>Further explanation</h3>
Reaction
2UO₂SO₄ + 6NH₃ + 3H₂O → (NH₄)₂U₂O₇ + 2(NH₄)₂SO₄
MW UO₂SO₄ : 366.091
MW (NH₄)₂U₂O₇ : 624.131
MW H₂O : 18.0153
MW NH₃ : 17.0306
mol of 100 kg water :

mol of 100 kg ammonia :

mol of UO₂SO₄ :

Limiting reactants : smallest mol ratio(mol : coefficient)

UO₂SO₄ ⇒ Limiting reactants
mol (NH₄)₂U₂O₇ : mol UO₂SO₄

mass (NH₄)₂U₂O₇

Carbon is special and unique because it is able to form different compounds with a lot of elements, including itself. When it bonds with itself, this is possible because of the concept of hybridization. It is the mixing of atomic orbitals into a new hybrid orbital. In this case, methane is formed through the sp³ hybridization.
Answer:
Butanoic acid present in solution
Explanation:
In this case, we have a buffer solution of butanoic acid and sodium butanoate. In other words a reaction like this:
HC₄H₇O₂ + H₂O <------> C₄H₇O₂⁻ + H₃O⁺ Ka = 1.5x10⁻⁵
The low value of Ka means that this is a weak acid. So, after this, the NaOH is added to the solution.
The NaOH is a really strong base, so we might expect that the pH of the solution increase drastically, however this do not occur.
The reason for this is because the first thing to happen in this reaction is an acid base reaction.
The NaOH react with the butanoic acid still present in solution, because is a weak acid, so in solution, this acid is not completely dissociated into it's respective ions. So the butanoic acid reacts with the NaOH and the products:
HC₄H₇O₂ + NaOH <------> Na⁺C₄H₇O₂⁻ + H₂O
So, because of this, the pH increase but not much.