Answer:
-30/7 = x
Step-by-step explanation:
im guessing u mean (3x+5)/(2x+7) = 5
3x+5 = 5(2x+7)
3x+5=10x+35
-7x=30
x= -30/7
<h3>
Answer: 226 degrees</h3>
=====================================================
Explanation:
Notice the tickmarks on the segments in the diagram. This tells us that chords DC and CB are the same distance from the center. It furthermore means that DC and CB are the same length, and arcs DC and CB are the same measure
arc DC = arc CB
12x+7 = 18x-23
12x-18x = -23-7
-6x = -30
x = -30/(-6)
x = 5
---------------------
Use this x value to find the measure of arcs DC and CB
- arc DC = 12x+7 = 12*5+7 = 67
- arc CB = 18x-23 = 18*5-23 = 67
We get the same measure for each, which helps confirm we have the correct x value.
The two arcs in question add to 67+67 = 134 degrees. This is the measure of arc DCB. Subtract this from 360 to get the answer
arc DAB = 360-(arc DCB) = 360-134 = 226 degrees
I'm using the idea that (arc DCB) + (arc DAB) = 360 since the two arcs form a full circle.
<span>We have this equation:
</span>

and we need to find the value of x.
First of all, we multiply the whole equation for 1/2, so our goal is to isolate x, therefore:
Next step we must do is to apply <span>logarithms:
</span>

Next, we have to apply identities and then to solve the equation:




Finally, we have the value of x which was our goal. This is the answer for the question above:
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>
A^2 + B^2 = C^2
6^2 + B^2 = 7^2
36 + B^2 = 49
B^2 = 13
B = 3.61
Leave a like and a rating!