Answer:
Chloromethane experiences dipole-dipole interactions.
Chloromethane has a higher molar mass than hydrogen.
Explanation:
The molar mass is directly proportional to the heat of fusion, since the heavier the molecules the more energy they need to separate. Intermolecular forces are also directly proportional to the heat of fusion, because the greater the interaction they experience, the more energy they require to separate. The dipole-dipole interactions experienced by chloromethane are stronger than the interactions that take place in hydrogen.
Einstein's energy mass equivalence relation say that if the whole given mass is converted to energy then it would be

where
m = mass in kg
c = speed of light in m/s
this is the origination of quantum physics and by this formula we can relate the dual nature of light and particle
So correct relation above will be

M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Answer:
D is the answer
Explanation:
D is the most highest one so
the answer is D
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft