Answer:
Part a)

Part b)

Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Explanation:
Part a)
Let say the collision between Moose and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part b)
Let say the collision between Camel and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Answer:
(6) Is proportional to L and inversely proportional to A.
Explanation:
I will explain it mathematically, following formula relates Resistance to length of wire L and cross sectional area A.

here, p is greek letter 'Rho' is called resistivity of the wire and L is lenght and A is cross sectional area of the wire.
By inspection we can tell that as length increases the resistance of wire increase, so resistance must be directly propoetional to length.
and resistance decrease as cross sectional area A decreases.
So the resistance must be directly proportional to Length of wire and inversly proportional to cross sectional area of wire.
option number (6) fits all of our deductions.
Answer:
(e) The particles move apart with a velocity that increases for a while and then becomes constant.
Explanation:
Each particle feels a repulsive (because they have same sign of charge) electric force from the each other:

and

So each particle feels a repulsive force proportional to the quadratic inverse of the distance.that means that the charges begin to move away, and the further away they are from each other, the force (and therefore the acceleration) decreases, at a rate inversely proportional to the square of the distance. Theoretically this acceleration will never be zero, but in practice it will at some point reach a value very close to zero. Then the speed will grow for a while and when the acceleration has reached almost zero, the speed will practically remain constant.
Answer:
90 ohms
Explanation:
1/r = 1/180 + 1/180
1/r= 2/180
take the reciprocal of 2/180 which is 180/2 and its 90 ohms