When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
The answers is
D. The acid creates cracks in the rocks, which
allow air to circulate through the rock,
causing it to weather
<h2>
Answer</h2>
The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.
<h2>
Explanation</h2>
The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.
Answer:
5295.3 N
Explanation:
According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force
mv + P = mV
P = mV - mv = m(V - v)
Since the velocity of the ball before and after is in opposite direction, one of them is negative
P = 0.14(44.8 - (-19.5)) = 9 kg m/s
Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is
F = P/t = 9/0.0017 = 5295.3 N
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.