Answer : The percentage reduction in intensity is 79.80 %
Explanation :
Using Beer-Lambert's law :



where,
A = absorbance of solution
C = concentration of solution = 
l = path length = 2.5 mm = 0.25 cm
= incident light
= transmitted light
= molar absorptivity coefficient = 
Now put all the given values in the above formula, we get:



If we consider
= 100
then, 
Here 'I' intensity of transmitted light = 20.198
Thus, the intensity of absorbed light
= 100 - 20.198 = 79.80
Now we have to calculate the percentage reduction in intensity.


Therefore, the percentage reduction in intensity is 79.80 %
If Star A appears to move back and forth by a greater amount than Star B, which star do you think is actually closer to you? Star A. If the parallax angle for a star is 1 arcsecond, what is the distance from the Sun to that star
NaOH+HCl-> NaCl+H2O
1 mole of NaOH
1 mole of HCl.
To calculate volume of NaOH
CaVa/CbVb= Na/Nb
Where Ca=2M
Cb=1M
Va=200cm³
Vb=xcm³
Substitute into the equation.
2×200/1×Vb=1/1
400/Vb=1/1
Cross multiply
Vb×1=400×1
Vb=400cm³
To calculate the mass of sodium chloride, NaCl from the neutralization rxn.
Mole of NaCl=1
Molar mass of NaCl= 23+35.5=58.5
Mass=xgrammes.
Mass of NaCl=Number of moles × Molar mass.
Substitute
Mass of NaCl= 1×58.5
=58.5g
This is what I could come up with.
Answer:
During a total lunar eclipse, the Earth lies directly between the sun and the moon, causing the Earth to cast its shadow on the moon.
Explanation: