59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
<h3>What is an ideal gas equation?</h3>
An ideal gas equation states the relationship between the moles of the substance, temperature, pressure, and volume. The ideal gas equation is given as, PV=nRT
Given data:
=48.0 atm
=3T_1=17.0°C
=?
=4.00 L
=24.0°C
= 

= 0.59 atm = 59.78175 kPa
Hence, 59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
Learn more about the ideal gas equation here:
brainly.com/question/22368165
#SPJ1
It is the chemiclas that is needed in the chimstry in science class
Answer:
Explanation:
Mg + 2HCl = Mg Cl₂ + H₂
.594 g = .594 / 24.3
= .02444 mole
Heat evolved = msΔ T , m is mass of water ( solvant ) , s is specific heat of water , Δ T is rise in temperature
= 100 x 4.2 x ( 41.83 - 25 )
= 7068.6 J
.02444 mole of Mg evolves 7068.6 J of heat
1 mole of Mg evolves 7068.6 /.02444 J
= 289222.6 J
= 289 kJ .
Molar heat enthalpy = 289 kJ .
Answer : The wavelength is 
Solution : Given,
frequency = 29.2 Hz
Formula used :

where,
= frequency
= wavelength
c = speed of light = 
Now put all the given values in this formula, we get the wavelength.

Therefore, the wavelength is 
Answer 2, because when you add salt to something, it cools faster (ex. When you add salt to an ice chest so that it stays cold) and it takes longer to boil (ex. When you boil salt out of ocean water so that its safe to drink) therefore, the more NaCl in the solution, the more it will exibit these properties