1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
5

When should a line graph be used

Chemistry
1 answer:
olga_2 [115]3 years ago
6 0

Answer:

<em>Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group.</em>

You might be interested in
Do plasmids have an importance beyond the practice of genetic engineering?
kozerog [31]
Answer: Yes

Explanation: Plasmids offer a number of unique characteristics that make genetic engineering much more efficient. Plasmids are a type of non-chromosomal DNA. Integrating DNA into a bacterial or other chromosome is far more complex than simply putting DNA into a cell; plasmids make it easier to transport DNA into a cell by eliminating this step.

4 0
2 years ago
The reaction is proceeding at a rate of 0.0080 Ms-1 in 50.0 mL of solution in a system with unknown concentrations of A and B. W
Leokris [45]

Answer:

0.0010 mol·L⁻¹s⁻¹  

Explanation:

Assume the rate law is  

rate = k[A][B]²

If you are comparing two rates,

\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}

You are cutting each concentration in half, so

\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}

Then,

\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \left (\dfrac{1}{2}\right ) \left (\dfrac{1}{2}\right )^{2} = \dfrac{1}{2}\times\dfrac{1}{4} = \dfrac{1}{8}\\\\\text{rate}_{2} = \dfrac{1}{8}\times \text{rate}_{1}= \dfrac{1}{8}\times \text{0.0080 mol$\cdot$L$^{-1}$s$^{-1}$} = \textbf{0.0010 mol$\cdot$L$^{-1}$s$^{-1}$}\\\\\text{The new rate is $\large \boxed{\textbf{0.0010 mol$\cdot$L$^\mathbf{{-1}}$s$^{\mathbf{-1}}$}}$}

8 0
3 years ago
A pyramid of energy is used to analyze the amount of energy available at each feeding level in a food chain. Using the pyramid a
Troyanec [42]
C is the answer it’s not d because mackerel does not eat tuna I’m not sure tho
8 0
3 years ago
Read 2 more answers
2. Graph the following information in a LINE graph. Label and number the x and y-axis approHDILI.
Harman [31]
A) the independent variable is the variable that doesn’t rely on another variable. For this question the independent would be the days.
b) the dependent variable is the number of bacteria
c) ‘Number of bacteria across a number of days’
4 0
3 years ago
A student titrates a 10.00mL sample of an HCl solution, using 0.359 M solution of NaOH. She finds that 24.75mL of sodium hydroxi
salantis [7]
HCl and NaOH react in a 1:1 ratio, meaning that 1 H+ from HCl will react with 1 OH- from NaOH. Knowing this, and that molarity is mol/liter, all we need to do is use what we have available. First we must find the mols of HCl in our solution, so we set up the following equation in the following steps:
1. 24.75mL x (0.359mol NaOH / 1000mL) = 8.885 x 10^-3mol NaOH
   This is done in order to find the mols of NaOH to convert to mols of HCl.
2. 8.885x10^-3mol NaOH x (1 mol HCl/1mol NaOH) = 8.885 x 10^-3mol HCl
   Here we just used the mols of NaOH we found to convert to mols of HCl using the 1:1 ratio described earlier.

From the mols of HCl all we have to do is divide by the amount of liters in the solution. Since we started with 10mL HCl and added 24.75mL NaOH, the total volume is 34.75mL = 0.03475L. So:
8.885 x 10^-3mol HCl/0.03475L = 2.557 x 10^-1M HCl
However, this is the molarity of the HCl and NaOH solution, not the original HCl solution. Using the dilution equation M1V1=M2V2, we can solve for the original molarity.
M1 = the molarity of our HCl in the titrated mixture (2.557 x 10^-1M HCl)
V1 = the total volume that our mixture has (34.75mL = 0.03475L)
M2 = what we're trying to find
V2 = the amount of the original HCl that we had (10mL = 0.010L)
Simply solving for M2 gives us:
M2 = (M1V1) / V2 or:
M2=((2.557 x 10^-1) x 0.03475L) / 0.010L = 8.89 x 10^-1M HCl. That is your answer.
6 0
3 years ago
Other questions:
  • Consider the mechanism. Step 1: A+B↽−−⇀CA+B↽−−⇀C equilibrium Step 2: C+A⟶DC+A⟶D slow Overall: 2A+B⟶D2A+B⟶D Determine the rate la
    13·1 answer
  • Food contains chemical potential energy that the body uses. How do you think that the body gains this energy
    5·1 answer
  • What does the term "compound" mean? two or more substances dispersed in one another but each retaining their own identity. two o
    12·2 answers
  • What are the signs of a chemical reaction?
    8·1 answer
  • Part a the disproportionation of mn2+(aq) to mn(s) and mno2(s) in acid solution at 25 ∘c. calculate δg∘rxn.
    11·1 answer
  • Part a use valence bond theory to devise a hybridization and bonding scheme for co2. match the words in the left column to the a
    15·1 answer
  • A very hot cube of copper metal (32.5 g) is submerged into 105.3 g of water at 15.4 0C and it reach a thermal equilibrium of 17.
    12·1 answer
  • Pls answer ill give brainliest question in picture
    15·1 answer
  • I NEED HELP PLS HELP!
    12·1 answer
  • Kingdom:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!