Answer:
According to Bohr, the amount of energy needed to move an electron from one zone to another is a fixed, finite amount. ... The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level. This situation is unstable, however.
Answer: I HOPE THIS HELPS, HAVE A GREAT EARLY HALLOWEEN
Explanation:
PubChem CID: 1084
Molecular Formula: S2O3(2−) or O3S2-2
Synonyms: Thiosulphate THIOSULFATE ION sulfurothioate UNII-LLT6XV39PY Thiosulfate (S2O32-) More...
Molecular Weight: 112.13 g/mol
<u>Answer:</u> The initial concentration of hydrogen peroxide at the given temperature is 0.399 M
<u>Explanation:</u>
Decomposition of hydrogen peroxide is following first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 855 s
= initial amount of the reactant = ?
[A] = amount left after decay process = 0.321 M
Putting values in above equation, we get:
![2.54\times 10^{-4}s^{-1}=\frac{2.303}{855s}\log \frac{[A_o]}{0.321}](https://tex.z-dn.net/?f=2.54%5Ctimes%2010%5E%7B-4%7Ds%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B855s%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B0.321%7D)
![[A_o]=0.399M](https://tex.z-dn.net/?f=%5BA_o%5D%3D0.399M)
Hence, the initial concentration of hydrogen peroxide at the given temperature is 0.399 M