We have to convert 2% in to a decimal then multiply it into the x-value which is the months with the addition of 500 because that is the start value.If you were to graph this it would be a linear fuction, y=0.2x+500. The rate of change is found by slope, so rise over run. taking 2 points on the graph and do this
(y 2-y 1)/(x 2-x 1) and graph the equation and get two of the points and find the slope for the rate of change.
Given:
The focus of the parabola is at (6,-4).
Directrix at y=-7.
To find:
The equation of the parabola.
Solution:
The general equation of a parabola is:
...(i)
Where, (h,k) is vertex, (h,k+p) is the focus and y=k-p is the directrix.
The focus of the parabola is at (6,-4).

On comparing both sides, we get

...(ii)
Directrix at y=-7. So,
...(iii)
Adding (ii) and (iii), we get



Putting
in (ii), we get



Putting
in (i), we get


Therefore, the equation of the parabola is
.
A number in the tens place 84
Answer:
Step-by-step explanation:
Its symbols from ancient Egypt welded in to the rock that the gods had walked on
For this problem you need to understand that a linear graph is a straight line (Remember Rise/Run).
A continous function is <span>a </span>continuous function<span> is a </span>function <span>for which sufficiently small changes in the input result in arbitrarily small changes in the output, so we can already cross off that as an answer.
The Y-Intercept is the cost (in dollars), so this would be to monthly fee.
Now, onto the rate of change. T</span>he rate of change is <span>represented by the slope of a line. So the more classes you take the more it will increase. Therefore the cost for one class is the rate of change.
Lastly, the cost for one class is $10. It's not, since $10 is the intial fee to belong to a gym, so this is false.
Recap:
True
-The relationship is linear
-The y-intercept represents the monthly fee.
-The rate of change represents the cost for one class.
False
-The relationship represents a continuous function.
-The cost for one class is $10.
I hope I've helped you, have a great day!</span>