What we want to measure is the taste of coffee.
The following were kept constant during the experimental investigation:
The type of coffee,
The type of percolator,
The same amount and type of water,
The same perking time,
The same electrical sources.
Because these items were kept constant, they are not expected to influence the outcome of the experimental investigation.
Define:
y = the metric used to measure the taste of coffee
x = amount of coffee grounds used for the taste experiment.
Therefore the relationship that arises from the experiment is
y = y(x).
Because x is controllable and is varied during the experiment, it is the independent variable.
Because the measured value of y depends on x, therefore y is the dependent variable.
Answer:
The taste of coffee is the dependent variable.
The amount of coffee grounds used is the independent variable.
<u>Answer:</u> The pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
<u>Explanation:</u>
There are three types of solution: acidic, basic and neutral
To determine the type of solution, we look at the pH values.
- The pH range of acidic solution is 0 to 6.9
- The pH range of basic solution is 7.1 to 14
- The pH of neutral solution is 7.
We are given:
Concentration of HI = 0.100 M
1 mole of HI produces 1 mole of hydrogen ions and 1 mole of iodide ions
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
![[H^+]=0.100M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.100M)
Putting values in above equation, we get:

To calculate the pOH of the solution, we use the equation:
pH + pOH = 14

Hence, the pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
The alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
<h3>What are the properties of alkali metals?</h3>
The alkali metals have the high thermal and electrical conductivity. It has high lustre, ductility, and malleability as compared to other materials. Each alkali metal atom has one electron in its outermost shell which make more reactive.
So we can conclude that the alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
Learn more about metal here: brainly.com/question/25597694
#SPJ1
Answer:
Tetrahedral
Explanation:
For the repulsion of the free electron pair theory, the shape of a molecule will be to repel the bonds and the free electrons on the central atom. In a molecule of carbon tetrachloride, the central atom (C) has no free electrons, so, the shape that repels better the charge is tetrahedral, as shown below.