Answer :
(a) Reaction at anode (oxidation) :
(b) Reaction at cathode (reduction) :
(c) 
(d) Yes, we have have enough information to calculate the cell voltage under standard conditions.
Explanation :
The half reaction will be:
Reaction at anode (oxidation) :

Reaction at cathode (reduction) :

To balance the electrons we are multiplying oxidation reaction by 4 and then adding both the reaction, we get:
Part (a):
Reaction at anode (oxidation) :

Part (b):
Reaction at cathode (reduction) :

Part (c):
The balanced cell reaction will be,

Part (d):
Now we have to calculate the standard electrode potential of the cell.


For a reaction to be spontaneous, the standard electrode potential must be positive.
So, we have have enough information to calculate the cell voltage under standard conditions.
<span>Tthis is known as the Goldich Dissolution Serie</span>
Answer:
7.43 × 10²⁴ m⁻³
Explanation:
Data provided in the question:
Conductivity of a semiconductor specimen, σ = 2.8 × 10⁴ (Ω-m)⁻¹
Electron concentration, n = 2.9 × 10²² m⁻³
Electron mobility,
= 0.14 m²/V-s
Hole mobility,
= 0.023 m²/V-s
Now,
σ = 
or
σ = 
here,
q is the charge on electron = 1.6 × 10⁻¹⁹ C
p is the hole density
thus,
2.8 × 10⁴ = 1.6 × 10⁻¹⁹( 2.9 × 10²² × 0.14 + p × 0.023 )
or
1.75 × 10²³ = 0.406 × 10²² + 0.023p
or
17.094 × 10²² = 0.023p
or
p = 743.217 × 10²²
or
p = 7.43 × 10²⁴ m⁻³
Answer:
cytoplasm is found in both plant and animal cell.