Answer:
3000 kJ/kg
Explanation:
The calorific value of a substance is the amount of heat produced per unit mass by the combustion of the substance.
It is given by:

where
Q is the amount of heat released
m is the mass of the fuel
In this problem, we have:
m = 60 kg is the mass of fuel
is the amount of heat released
Therefore, the calorific value of the fuel is:

Answer:
(40 g O) / (15.99943 g O/mol) x (1 mol CaCO3 / 3 mol O) x (100.0875 g CaCO3/mol) =
83 g CaCO3
So answer D), although three significant digits are not justified.
Your welcome! Please give me brainiest and have a Great day! <3
Answer: a) The
of acetic acid at
is 
b) The percent dissociation for the solution is 
Explanation:

cM 0 0

So dissociation constant will be:

Give c= 0.10 M and
= ?
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![[H^+]=1.35\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.35%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COO^-]=1.35\times 10^{-3}M](https://tex.z-dn.net/?f=%5BCH_3COO%5E-%5D%3D1.35%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COOH]=(0.10M-1.35\times 10^{-3}=0.09806M](https://tex.z-dn.net/?f=%5BCH_3COOH%5D%3D%280.10M-1.35%5Ctimes%2010%5E%7B-3%7D%3D0.09806M)
Putting in the values we get:


b) 



It has 7.22 moles.... mole =mass/molar mass
molar mass of H2O=18
130/18=mole