Answer:
Explanation:
a )
initial velocity u = 45 m/s
acceleration a = - 5 m/s²
final velocity v = 0
v = u - at
0 = 45 - 5 t
t = 9 s
b )
s = ut - 1/2 at²
= 45 x 9 - .5 x5x 9²
405 - 202.5
202.5 m
2 )
a )
s = ut + 1/2 a t²
u = 0
s = 1/2 at²
= .5 x 9.54 x 6.5²
= 201.5 m
b )
v = u + at
= 0 + 9.54 x 6.5
= 62.01 m / s
3
a )
acceleration = (v - u) / t
= (34 - 42) / 2.4
= - 3.33 m /s²
b )
v² = u² - 2 a s
34² = 42² - 2 x 3.33² s
s = 27.41 m
c )
Average velocity
Total displacement / time
= 27.41 / 2.4
= 11.42 m /s
4 )
a )
v = u + at
v = 0 + 3 x 4
= 12 m /s
b )
s = ut + 1/2 a t²
= o + .5 x 3 x 4²
= 24 m
Answer:
Alpha particles Ichargeq q = + 2e mass m=6.8*10^ -27 kg) at 17*10^ 4 m/s What magnetic field strength would be required to bend them into a circular path of radiuse c = 0.25m
Explanation:
Alpha particles Ichargeq q = + 2e mass m=6.8*10^ -27 kg) at 17*10^ 4 m/s What magnetic field strength would be required to bend them into a circular path of radiuse c = 0.25m ok
Answer:
Heat required to raise the temperature of the aluminium is 4750 J
Explanation:
As we know that the heat energy required to raise the temperature of the aluminium is given as

here we know that
m = 50 g


so we have


Answer:
Looks like you have:
a = -.324 cos 2.5 t
In this case ω^2 A = .324
ω = 2.5
f = ω / (2 * pi) = 2.5 / 6.28 = .40 / sec
Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground