<h3><u>Answer;</u></h3>
electric potential
<h3><u>Explanation;</u></h3>
Electric potential is the electric potential energy per unit charge.
Mathematically; V =PE/q
Where; PE is the electric potential energy, V is the electric potential and q is the charge.
Electric potential is more commonly known as voltage. If you know the potential at a point, and you then place a charge at that point, the potential energy associated with that charge in that potential is simply the charge multiplied by the potential.
Answer:
4 tonne/m³
Explanation:
ρ = m / V
ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))
ρ = 0.0041 g/mm³
Converting to tonnes/m³:
ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³
ρ = 4.1 tonne/m³
Rounding to one significant figure, the density is 4 tonne/m³.
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>