Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
78.4 m
Explanation:
Using newton's equation of motion,
S = ut + 1/2gt²......................... Equation 1
Where S = Height, t = time, u = initial velocity, g = acceleration due to gravity.
Note: Taking upward to be negative, and down ward positive
Given: u = 49 m/s, t = 2.0 s, g = -9.8 m/s²
Substitute into equation 1
S = 49(2) - 1/2(9.8)(2)²
S = 98 - 19.6
S = 78.4 m
Hence the height of the ball two seconds later = 78.4 m
From what i know it is c. it is a lever
The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
Answer:
please the answer below
Explanation:
(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

k=8.89*10^9
For both cases we have

(b) by replacing this values of r in the expression for V we obtain

hope this helps!!