-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
Answer:
6.32 m/s 18.43° northeast
Explanation:
We express the velocity of hawk as:

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:
≈
And the angle with respect to the east should be with:

Resolution in this sentence refers to a solution to the problem
Answer:
Forces between molecules
Explanation:
The tensions between molecules are the characteristic that explains variances in the specific heat capacity of two substances.
This means that a substance's specific heat capacity will increase or be higher the closer its atoms are bound together. As a result, it differs for the different states of matter, such as solid, liquid, and gas.
Answer:
Their measured results are closer to the exact or true value. Hence, their measured value is considered to be more accurate.
Explanation:
Considering the situation described above, the accuracy of a measured value depicts how closely a measured value is to the accurate value.
Hence, since the students' measured values have very low percent differences, it shows the similarity of computations or estimates to the actual values, which in turn offers a smaller measurement error.
Therefore, their measured results are closer to the exact or true value, which implies that their measured value is considered to be more accurate.