Answer:
T2 = 260 K
Explanation:
<em>Given data:</em>
P1 = 150.0 k Pa
T1 = (-23+ 273.15) K = 250.15 K
V1 = 1.75 L
P2 = 210.0 kPa
V2 = 1.30 L
<em>To find:</em>
T2 = ?
<em>Formula:</em>


<em>Calculation:</em>
T2 = (210.0 kPa) x (1.30 L) x (250.15 K) / (150.0 kPa) x (1.75 L)
T2 = 260 K
Answer:- 1467 K
Solution:- It asks to calculate the kelvin temperature of the light bulb. Looking at the given info, it is based on ideal gas law equation, PV=nRT.
Given: 
V = 75.0 mL = 0.0750 L
P = 116.8 kPa
We know that, 101.325 kPa = 1 atm
So, 
= 1.15 atm
R is universal gas constant and it's value is
.
T = ?
Let's plug in the values in the equation and solve it for T.

0.08625 = 0.00005878(T)

T = 1467 K
So, the temperature of the light bulb would be 1467 K.
Answer:
كىتى
Explanation:
ؤكىتسؤكى سكتؤىسى شؤت سؤتنى،آ}تسى}
Answer: Now that you see to some extent bit about place nonrenewable fuel sources come from, can you analyze in what way or manner the Sun’s light strength is ultimately being the reason for the strength in fossil fuels? Describe the way that light strength must enjoy become the synthetic strength in fossil fuels and therefore energetic energy. (Hint: Think about by means of what plants in an environment take their energy.)