Answer: B
Explanation: Graph B compares the two temperatures on separate lines so that we can see the comoparison directly, as a function of time. Not only does the graph quickly answer which condition id most favorable to colony growth, but it also hints at some behaviors that may accelerate growth as time goes on. Graph C is a possible answer, if the <u>only</u> question is which promotes growth the fastest. But the questions asks "compare," which Graph B does not allow as well as Graph C.
The mass of 1.72 mol of magnesium fluoride is 107 grams.
To determine the mass of 1.72 mol of magnesium fluoride, we first need the chemical formula of magnesium fluoride. Magnesium forms a +2 ion (Mg+2) and fluoride forms a -1 ion (F-1). Since all compounds formed from ions have to be electrically neutral, we need 2 fluoride ions and 1 magnesium ion. Therefore, the formula for magnesium fluoride is MgF2.
Now we need to determine the molar mass of the compound from the molar mass values from the periodic table. Let's use a table to calculate this molar mass.
Molar mass of MgF2
Element Molar Mass (g/mol) Quantity Total (g/mol)
Mg 24.31 1 24.31
F 19.00 2 38.00
Total molar mass of MgF2 = 24.31 g/mol + 38.00 g/mol = 62.31 g/mol
This is the mass of one mole of the substance. If we have 1.72 mols of it, we multiply 1.72 by 62.31.
1.72 mol (62.31 g/mol) = 107 grams
We rounded to 107 to keep the correct number of significant digits in our answer.
Answer:
radiation, conduction, convection, conduction
The concentration of [H3O+] will be 6.3 x
M
<h3>pH</h3>
Mathematically, pH = -log [H+] or -log [H3O+]
With a pH of 13.2:
-log [H3O+] = 13.2
log [H3O+] = -13.2
[H3O+] = 6.3 x
M
More on pH can be found here: brainly.com/question/491373
#SPJ1