<span>Each mole contains Avagodro's number of atoms i.e. 6.023x10^23, so
3 moles x 6.023x10^23 atoms/mole = 18.069x10^23 atoms = 1.8x19^24 atoms </span>
Ionic compound consists of a positively charged ion and a negatively charged anion. For example, NaCl. Na (sodium) is a cation (another word for positively charged ion) and Cl (chloride) is a anion (another way for negatively charged ion.)
Molecular compounds consists of only negatively charged ions. For example Br2I is a compound of 2 elements that are negatively charged.
Unlike ionic compounds, molecular compounds consists of two or more negatively charged elements.
Answer
is: The molar solubility of calcium phosphate is 108s⁵ = Ksp.
<span>
Balanced chemical reaction: Ca</span>₃(PO₄)₂(s) → 3Ca²⁺(aq) + 2PO₄³⁻(aq).<span>
[Ca²</span>⁺] =
3s(Ca₃(PO₄)₂) =
3s.<span>
[PO</span>₄³⁻] = 2s.<span>
Ksp = [Ca²</span>⁺]³ · [PO₄³⁻]².<span>
Ksp = (3s)³ · (2s)².
Ksp = 108s</span>⁵.
s = ⁵√(Ksp ÷ 108).
Answer:
the final volume of the gas is
= 1311.5 mL
Explanation:
Given that:
a sample gas has an initial volume of 61.5 mL
The workdone = 130.1 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm ; we have
External Pressure
:


The workdone W =
V
The change in volume ΔV= 
ΔV = 
ΔV = 
ΔV = 1.25 L
ΔV = 1250 mL
Recall that the initial volume = 61.5 mL
The change in volume V is 

multiply through by (-), we have:

= 1250 mL + 61.5 mL
= 1311.5 mL
∴ the final volume of the gas is
= 1311.5 mL
During a phase change the temperature does not change since all of the heat is being absorbed in order to break the intermolecular forces. Due to that, the formula will not need to have T in it and is actually q=nΔH(v).
n=the number of moles (in this case 2.778mol of water since you divide 50g by 18g/mol).
ΔH(v)=the molar heat of vaporization (in this case 40.7kJ/mol).
q=the heat that must be absorbed
q=2.778mol×40.7kJ/mol
q=113.1kJ
Therefore the water needs to absorb 1.13×10²kJ.
I hope this helps. Let me know if anything is unclear.