Explanation:
A race car's main target is how to have rapid acceleration by scaling its speed. Acceleration of car is mostly a product of the force of the car engine.
According the newtons second law"The acceleration of body in motion depends on two main variables, the net force acting on it and the mass".
It is also written mathematically as:
F = m x a
F is the net force produced by the engine
m is the mass of the car
a is the acceleration.
Re-writing the equation:
Now Acceleration = 
We can see that acceleration is directly related to increasing force but inversely proportional to the mass.
A race car needs to have a good acceleration so as to attain top speed.
The more the mass, the less the acceleration.
This is why extra weight like the seats are expunged.
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
<em>The car will be moving at 5.48 m/s at the bottom of the hill</em>
Explanation:
<u>Principle of Conservation of Mechanical Energy</u>
In the absence of friction, the total mechanical energy is conserved. That means that
is constant, being U the potential energy and K the kinetic energy
U=mgh

When the car is at the top of the hill, its speed is 0, but its height h should be enough to produce the needed speed v down the hill.
The Kinetic energy is then, zero. When the car gets enough speed we assume it is achieved at ground level, so the potential energy runs out to zero but the Kinetic is at max. So the initial potential energy is transformed into kinetic energy.
We are given the initial potential energy U=45 J. It all is transformed to kinetic energy at the bottom of the hill, thus:

Multiplying by 2:

Dividing by m:

Taking square roots:



v = 5.48 m/s
The car will be moving at 5.48 m/s at the bottom of the hill
Lindsay should fly the plane in the direction [W 12.5° S] to get Hamilton.
Using Sine rule to solve this question
Sine rule => SinA/a = SinB/b = SinC/c = constant
The magnitude of wind is 50 with an angle of 60 degrees.
The magnitude of plane is 200 and the angle at which it should fly is unknown and should be θ.
One side is 50 km/hr at an angle of 60 degrees.
sin 60°/200 = sin θ / 50
50 × sin 60° = 200 × sin θ
√3/2 = 4 × sin θ
√3/8 = sin θ
sin θ = 0.2165
θ = sin⁻¹(0.2165)
θ = 12.5°
So Lindsay have to fly the plane in the direction of [W 12.5° S].
Learn more about Sine Rule here:
brainly.com/question/27174058
#SPJ10
It all comes to the doppler effect, the red shift means that the galaxy is moving away from us. The redshift is a result from the doppler effect, so as the galaxy moves away the wavelength expands, increasing the wavelength which responds to the red light.
Answer:
No. Twice as much work will give the ball twice as much kinetic energy. But since KE is proportional to the speed squared, the speed will be
times larger.
Explanation:
The work done on the ball is equal to the kinetic energy gained by the ball:

So when the work done doubles, the kinetic energy doubles as well:

However, the kinetic energy is given by

where
m is the mass of the ball
v is its speed
We see that the kinetic energy is proportional to the square of the speed,
. We can rewrite the last equation as

which also means

If the work is doubled,

So the new speed is

So, the speed is
times larger.