Answer:
The required angular speed the neutron star is 10992.32 rad/s
Explanation:
Given the data in the question;
mass of the sun M = 1.99 × 10³⁰ kg
Mass of the neutron star
M = 2( M )
M = 2( 1.99 × 10³⁰ kg )
M = ( 3.98 × 10³⁰ kg )
Radius of neutron star R = 13.0 km = 13 × 10³ m
Now, let mass of a small object on the neutron star be m
angular speed be ω.
During rotational motion, the gravitational force on the object supplies the necessary centripetal force.
GmM = / R² = mRω²
ω² = GM = / R³
ω = √(GM = / R³)
we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²
we substitute
ω = √( ( 6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)
ω = √( 2.65466 × 10²⁰ / 2.197 × 10¹²
ω = √ 120831133.3636777
ω = 10992.32 rad/s
Therefore, The required angular speed the neutron star is 10992.32 rad/s
Answer: height = 3.98m
Explanation: by placing the watermelon at a height above the ground, it has a potential energy of the formulae
p = mgh
p = potential energy = 4.61kJ = 4610J
m = mass of watermelon = 118 kg
g = acceleration due gravity = 9.8 m/s²
4610 = 118 * 9.8 * h
h = 4610/ 118 * 9.8
h = 4610/ 1156.4
h = 3.98m
Answer:
0.5
Explanation:
because it is V uwbsusvegwjosnfvehdbuxbdusndgdghqbwbwbbeuehdbdhdhdhdudhdhdudhdnskowoqllqlqlqnebe
Randall has unconscious assumption that attractive people are more competent
I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.