Answer:
<h2><em><u>MASS</u></em></h2>
Explanation:
Inertia increases as an object's <u>Mass</u> increases.
Answer:
Therefore it will take 7.66 hours for 80% of the lead decay.
Explanation:
The differential equation for decay is


Integrating both sides
ln A= kt+c₁

[
]
The initial condition is A(0)= A₀,


.........(1)
Given that the
has half life of 3.3 hours.
For half life
putting this in equation (1)

[taking ln both sides,
]

⇒k= - 0.21
Now A₀= 1 gram, 80%=0.8
and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram
Now putting the value of k,A and A₀in the equation (1)




⇒ t≈7.66
Therefore it will take 7.66 hours for 80% of the lead decay.
Sr is the limiting reactant.
Given the reaction equation;
2Sr + O2 (g) → 2SrO
2 moles of Sr reacts with 1 mole of O2
2 moles Sr will react with x mole of O2
x = 2 ×1/2
x = 1 mole of O2
Since we have more O2 than required, it is the reactant in excess, hence Sr is the limiting reactant.
Learn more: brainly.com/question/14225536
The balanced equation for the above reaction is as follows;
Mg + 2HCl ---> MgCl₂ + H₂
stoichiometry of HCl to MgCl₂ is 2:1
we have been told that Mg is in excess therefore HCl is the limiting reactant
number of HCl moles reacted - 0.100 mol/L x 0.0256 L = 0.00256 mol
according to molar ratio, number of MgCl₂ moles formed - 0.00256/2
Therefore number of MgCl₂ moles formed - 0.00128 mol
mass of MgCl formed - 0.00128 mol x 95.20 g/mol = 0.122 g