The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.
Answer:
This is when two or more compounds or elements react to form a single product.
In these reactions new substances are produced or synthesized.
in simple terms the elements or compounds are converted to something new.
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g
Answer:
I'll take a gander at your question
Explanation:
If you mean the Earth's crust, your answer is The Mantle.
Answer:
The chemical characteristics of carbon affect the characteristics of organic molecules due to its tetravalent nature. It has four valence electrons in which it shares with other elements in order to form an octet configuration.
Carbon atoms are also capable of forming double and triple bonds with other atoms. These properties help determine the functional group present and gives us a knowledge of the chemical features such as polarity, melting and boiling present in the compound.