The least prevalent gas in the atmosphere was oxygen several billion years ago. This is because it was only around 2.4-3 billion years ago when the first photosynthetic bacteria evolved, meaning they produce food from inorganic compounds such as carbon dioxide and water to produce glucose and oxygen. Oxygen is then released in the atmosphere and this is called <em>The Great Oxygenation Event</em>.
Answer:
1.88 M
Explanation:
The following data were obtained from the question:
Mole of NaCl = 0.47 mole
Volume of solution = 0.25L
Molarity =?
Molarity is defined as the mole of solute per unit litre of the solution. It can represented mathematically as:
Molarity = mole /Volume
Using the above formula, the molarity of the salt water solution can be obtained as follow:
Molarity = 0.47/0.25
Molarity = 1.88 M
The rate law equation for Ozone reaction
r=k[O][O₂]
<h3>Further e
xplanation</h3>
Given
Reaction of Ozone :.
O(g) + O2(g) → O3(g)
Required
the rate law equation
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For reaction
aA + bB ⇒ C + D
The rate law can be formulated:
![\large{\boxed{\boxed{\bold{r~=~k.[A]^a[B]^b}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%5Cboxed%7B%5Cbold%7Br~%3D~k.%5BA%5D%5Ea%5BB%5D%5Eb%7D%7D%7D)
where
r = reaction rate, M / s
k = constant, mol¹⁻⁽ᵃ⁺ᵇ⁾. L⁽ᵃ⁺ᵇ⁾⁻¹. S⁻¹
a = reaction order to A
b = reaction order to B
[A] = [B] = concentration of substances
So for Ozone reaction, the rate law (first orde for both O and O₂) :
![\tt \boxed{\bold{r=k[O][O_2]}}](https://tex.z-dn.net/?f=%5Ctt%20%5Cboxed%7B%5Cbold%7Br%3Dk%5BO%5D%5BO_2%5D%7D%7D)
The rate<span> of a </span>reaction increases<span> if the temperature is increased, the concentration of a dissolved reactant is increased and the pressure of a </span>reacting<span> gas is increased. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
C definitely is the answer