Answer: F(t) = 11 - 0.9(t)
Explanation:
We know the following:
The candle burns at a ratio given by:
Burning Ratio (Br) = 0.9 inches / hour
The candle is 11 inches long.
To be able to create a function that give us how much on the candle remains after turning it after a time (t). We will need to know how much of the candle have been burned after t.
Let look the following equation:
Br = Candle Inches (D) / Time for the Candle to burn (T) (1)
Where (1) is similar to the Velocity equation:
Velocity (V) = Distance (D)/Time(T)
This because is only a relation between a magnitude and time.
Let search for D on (1)
D = Br*T (2)
Where D is how much candle has been burn in a specif time
To create a function that will tell us how longer remains of the candle after be given a variable time (t) we use the total lenght minus (2):
How much candle remains? ( F(t) ) = 11 inches - Br*t
F(t) = 11 - 0.9(t)
F(t) defines the remaining length of the candle t hours after being lit
Explanation:
a) 7.5= 111.1×2°= 0.1111×2^3
which can also be written as
(1/2+1/4+1/8+1/16)×8
sign of mantissa:=0
Mantissa(9 bits): 111100000
sign of exponent: 0
Exponent(5 bits): 0011
the final for this is:011110000000011
b) -20.25= -10100.01×2^0= -0.1010001×2^5
sign of mantissa: 1
Mantissa(9 bits): 101000100
sign of exponent: 0
Exponent(5 bits): 00101
the final for this is:1101000100000101
c)-1/64= -.000001×2^0= -0.1×2^{-5}
sign of mantissa: 1
Mantissa(9 bits): 100000000
sign of exponent: 0
Exponent(5 bits): 00101
the final for this is:1100000000100101
Forces equal the flag doesn't move either direction
Unequal forces the flag moves in the direction of the greater magnitude force