Explanation:
The tangential speed of Andrea is given by :

Where
r is radius of the circular path
ω is angular speed
The merry-go-round is rotating at a constant angular speed. Let the new distance from the center of the circular platform is r'
r' = 2r
New angular speed,

New angular speed is twice that of the Chuck's speed.
For this case we first think that the skateboard and the child are one body.
We have then:
1 = jug
2 = skateboard + boy
By conservation of the linear amount of movement:
M1V1i + M2V2i = M1V1f + M2V2f
Initial rest:
v1i = v2i = 0
0 = M1V1f + M2V2f
Substituting values
0 = (7.8) (3.2) + (M2) (- 0.65)
0 = 24.96 + M2 (-0.65)
-24.96 = (-0.65) M2
M2 = (-24.96) / (- 0.65) = 38.4 kg
Then, the child's mass is:
M2 = Mskateboard + Mb
Clearing:
Mb = M2-Mskateboard
Mb = 38.4 - 1.9
Mb = 36.5 Kg
answer:
the boy's mass is 36.5 Kg
Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
Answer:
send the wagon down a higher hill
Answer:
Kinda? Depends what the question is fully asking
Explanation:
Acceleration is a change in velocity. So I guess if the velocity of something is -2 m/s and its positively accelerating at a value of +1 m/s, then that means every second its velocity changes by +1m/s.
So that -2 m/s thing after one second will be going -1 m/s.
After another second it'll be going 0 m/s.
After another itll be going +1 m/s and so on.
So at one point for a brief moment, it can have an acceleration but be at 0 m/s velocity.