Answer:
2583.9 N/C
Explanation:
Parameters given:
Outer diameter = 14 cm
Outer radius, R = 7cm = 0.07m
Inner diameter = 7 cm
Inner radius, r = 3.5 cm = 0.035m
Charge of washer = 8 nC = 8 * 10^(-9)C
Distance from washer, z = 33 cm = 0.33m
The electric field due to a washer (hollow disk) is given as:
E = k * σ * 2π [ 1 - z/(√(z² + R²)]
Where σ = charge per unit area
σ = q/π(R² - r²)
σ = 8 * 10^(-9) /(π*(0.07 - 0.035)²)
σ = 2.077 * 10^(-6) C/m²
=> E = 9 * 10^9 * 2.077 * 10^(-6) * 2π * [1 - 0.33/(√(0.33² + 0.07²)]
E = 117.467 * 10^3 * (1 - 0.978)
E = 117.467 * 10^3 * 0.022
E = 2583.9 N/C
Explanation:
Take south to be negative.
a. Momentum is mass times velocity.
p = mv
p = (540 kg) (-6 m/s)
p = -3240 kg m/s
p = 3240 kg m/s south
b. Impulse = change in momentum
J = Δp
Since the mass is constant:
J = mΔv
J = (540 kg) (-4 m/s − (-6 m/s))
J = 1080 kg m/s
J = 1080 kg m/s north
Answer:
10N
Explanation:
1. Every Action has an equal and opposite reAction.
2. If 10N of force is acted upon an wrench, then the wrench will react with an equal amount of force, but in the opposite direction.
<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.
If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.