1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
3 years ago
13

As energy transformations occur within a system, the total energy of the system it A)increases B) decreases C) remains constant

D) is transferred out of the system 2
Physics
1 answer:
fenix001 [56]3 years ago
4 0
C) remains constant
you could’ve used google smh
You might be interested in
A charge of 80 coulombs passes through a circuit in 5 seconds. What is the current through the circuit?
UkoKoshka [18]

Answer:

I = 16amp

Explanation:

Charge coulomb ( Q ) = It

Where I =current in ampere

t = time = 5 seconds

80 = I × 5

I = 80/5

I = 16amp

The current through the circuit will be I = 16amp

4 0
3 years ago
To determine an athlete's body fat, she is weighed first in air and then again while she's completely underwater. it is found th
il63 [147K]

The difference in weight is due to the displacement of water (the buoyancy of water is acting on the athlete thus giving her smaller weight).<span>

The amount of weight displaced or the amount of buoyant force is: </span>

Fb = 690 N - 48 N

Fb = 642 N

From newtons law, F = m*g. Using this formula, we can calculate for the mass of water displaced:

m of water displaced = 642N / 9.8m/s^2

m of water displaced = 65.5 kg

Assuming a water density of 1 kg/L, and using the formula volume = mass/density:

V of water displaced = 65.5kg / 1kg/L = 65.5 L

The volume of water displaced is equal to the volume of athlete. Therefore:

V of athlete = 65.5 L

The mass of athlete can also be calculated using, F = m*g

m of athlete = 690 N/ 9.8m/s^2

m of athlete = 70.41 kg

 

Knowing the volume and mass of athlete, her average density is therefore:

average density = 70.41 kg / 65.5 L

<span>average density = 1.07 kg/L = 1.07 g/mL</span>

5 0
3 years ago
Read 2 more answers
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
Explain what is happening in this picture
Assoli18 [71]

Answer:

in this video waves are coming up for the BOTTOM to the top of the sandbar

7 0
3 years ago
With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward. If the force exerted on the book by
lara31 [8.8K]

According to the net force, the acceleration of the book is 16.47 m/s².

We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as

∑F = m . a

where F is force, m is mass and a is acceleration

From the question above, we know that

m = 3 kg

g = 9.8 m/s²

F1 = 20 N

Find the net force

∑F = F1 + W

∑F = 20 + m . g

∑F = 20 + 3 . 9.8

∑F = 20 + 29.4

∑F = 49.4 N

Find the acceleration

∑F = m . a

49.4 = 3 . a

a = 16.47 m/s²

Find more on force at: brainly.com/question/25239010

#SPJ4

7 0
1 year ago
Other questions:
  • Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate regions of the human brain. A small coil is
    12·1 answer
  • A mass weighing 32 pounds stretches a spring 2 feet. Determine the amplitude and period of motion if the mass is initially relea
    15·1 answer
  • A ferris wheel of radius 100 feet is rotating at a constant angular speed Ï rad/sec counterclockwise. using a stopwatch, the rid
    7·1 answer
  • What is the name for a star and planets held together by gravity? A. solar system B. galaxy C. black hole D. supernova
    10·1 answer
  • An information signal consists of a 25 Hz and a 75 Hz sine waves summed together. It is sampled at a frequency of 500 Hz, the hi
    11·1 answer
  • Which terms describe the purpose of antennas on devices that use radio waves
    11·1 answer
  • Density is equal to
    9·1 answer
  • A 60-V potential different is applied across a parallel combination of a 10-ohm and 20-ohm resistor. What is the current in the
    6·2 answers
  • Hailey is preparing a debate on the benefits of using synthetic polymers over natural polymers, and she wants to create a list t
    15·2 answers
  • Define kinetic energy and thermal energy. Describe what happens to each as the temperature of a substances increases.Explain the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!