Answer:
See description
Explanation:
This is an example where we need Tornicelli's law, which states that the horizontal speed of a fluid that starts falling from an orifice is the same speed that an object acquires from free-falling.

we are given:
![h_{cilinder} = 0.2 [m]\\h = 0.05 [m]\\d=0.15[m]](https://tex.z-dn.net/?f=h_%7Bcilinder%7D%20%3D%200.2%20%5Bm%5D%5C%5Ch%20%3D%200.05%20%5Bm%5D%5C%5Cd%3D0.15%5Bm%5D)
the horizontal velocity of the water at the start is:
![v = \sqrt{2(9.8)(0.05)}=0.989949 [m/s]=1[m/s]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B2%289.8%29%280.05%29%7D%3D0.989949%20%5Bm%2Fs%5D%3D1%5Bm%2Fs%5D)
now we need to find the time for the water drops to fall d:
as the gravity is the only force interacting with the water we have:

replace for y = d
![0.15 = \frac{1}{2} g*t^2=>t=\sqrt{\frac{2*0.15}{9.8}}=0.1749[s]](https://tex.z-dn.net/?f=0.15%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20g%2At%5E2%3D%3Et%3D%5Csqrt%7B%5Cfrac%7B2%2A0.15%7D%7B9.8%7D%7D%3D0.1749%5Bs%5D%20)
now that we have t we notice that there are no horizontal forces interacting with the water, so the horizontal position is given by:

Finally, we replace v and t:
![x(2.45) = 1*0.1749 = 0.1749 [m]=17.49[cm]](https://tex.z-dn.net/?f=x%282.45%29%20%3D%201%2A0.1749%20%3D%200.1749%20%5Bm%5D%3D17.49%5Bcm%5D)
From the gravity acceleration theorem due to a celestial body or planet, we have that the Force is given as

Where,
F = Strength
G = Universal acceleration constant
M = Mass of the planet
m = body mass
r = Distance between centers of gravity
The acceleration by gravity would be given under the relationship


Here the acceleration is independent of the mass of the body m. This is because the force itself depended on the mass of the object.
On the other hand, the acceleration of Newton's second law states that

Where the acceleration is inversely proportional to the mass but the Force does not depend explicitly on the mass of the object (Like the other case) and therefore the term of the mass must not necessarily be canceled but instead, considered.
Answer:
As animals get older, their bodies begin to change as well as their instincts and priorities. They get bigger and might adapt or develop.
Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N