1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
2 years ago
10

An arrow leaves a bow at 60 m/s at an angle of 30 degrees to the horizon.

Physics
1 answer:
Orlov [11]2 years ago
4 0

Answer: 11

Explanation:

You might be interested in
If a person believes that dreams have hidden meaning he or she would agree with Freud's ideas about _ content
uysha [10]
A.lucid because it makes more sense yo the answer how about you do it yourself
4 0
3 years ago
A golfer is on the edge of a 12.5 m bluff overlooking the 18th hole which is located 60 m from the base of the bluff. She launch
Lina20 [59]

Answer:

The ball impact velocity i.e(velocity right before landing) is 6.359 m/s

Explanation:

This problem is related to parabolic motion and can be solved by the following equations:

x=V_{o}cos \theta t----------------------(1)

y=y_{o}+V_{o} sin \theta t - \frac{1}{2}gt^{2}---------(2)

V=V_{o}-gt ----------------------- (3)

Where:

x = m is the horizontal distance travelled by the golf ball

V_{o} is the golf ball's initial velocity

\theta=0\° is the angle (it was  a horizontal shot)

t is the time

y is the final height of the ball

y_{o} is the initial height of the ball

g is the acceleration due gravity

V is the final velocity of the ball

Step 1: finding t

Let use the equation(2)

t=\sqrt{\frac{2 y_{o}}{g}}

t=\sqrt{\frac{2 (12.5 m)}{9.8 m/s^{2}}}

t=1.597s

Substituting (6) in (1):

67.1 =V_{o} cos(0\°) 1.597-------------------(4)

Step 2:  Finding V_{o}:

From equation(4)

67.1 =V_{o}(1) 1.597

V_0 = \frac{6.71}{1.597}

V_{o}=42.01 m/s (8)  

Substituting V_{o} in (3):

V=42.01 -(9.8)(1.597)

v =42 .01 - 15.3566  

V=26.359 m/s

5 0
2 years ago
A seagull flies at a velocity of 9.00 m/s straight into the wind. (a) if it takes the bird 20.0 min to travel 6.00 km relative t
enot [183]

Here we will the speed of seagull which is v = 9 m/s

this is the speed of seagull when there is no effect of wind on it

now in part a)

if effect of wind is in opposite direction then it travels 6 km in 20 min

so the average speed is given by the ratio of total distance and total time

v_{avg} = \frac{6000}{20*60}

v_{avg} = 5m/s

now since effect of wind is in opposite direction then we can say

V_{net} = v_{bird} - v_{wind}

5 = 9 - v_{wind}

v_{wind}= 4 m/s

Part b)

now if bird travels in the same direction of wind then we will have

v_{net}= v_{bird} + v_{wind}

v_{net} = 9 + 4 = 13 m/s

now we can find the time to go back

time = \frac{distance}{speed}

time = \frac{6000}{13}

time = 7.7 minutes

Part c)

Total time of round trip when wind is present

T = t_1 + t_2

T = 20 + 7.7 = 27.7 min

now when there is no wind total time is given by

T = \frac{6000}{9} + \frac{6000}{9}

T = 22.22 min

So due to wind time will be more

4 0
3 years ago
What is an example of potential energy to kinetic energy?
olga_2 [115]

Potential energy is the store she energy from an object this could include rubber bands. Kinetic energy is the energy that deals with motion a good example is a person running

6 0
2 years ago
Read 2 more answers
Daffy Duck is standing 6.8 m away from Minnie Duck. The attractive gravitational force between them is 5.4x10-8 N. If Daffy Duck
artcher [175]

Answer:

432.78 Kg

Explanation:

From the question given above, the following data were obtained:

Distance apart (r) = 6.8 m

Force of attraction (F) = 5.4×10¯⁸ N

Mass of Daffy Duck (M₁) = 86.5 kg

Mass of Minnie Duck (M₂) =?

NOTE: Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²

The mass of Minnie Duck can be obtained as follow:

F = GM₁M₂ / r²

5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 6.8²

5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 46.24

Cross multiply

6.67×10¯¹¹ × 86.5 × M₂ =5.4×10¯⁸ × 46.24

Divide both side by 6.67×10¯¹¹ × 86.5

M₂ = 5.4×10¯⁸ × 46.24 / 6.67×10¯¹¹ × 86.5

M₂ = 432.78 Kg

Therefore, the mass of Minnie Duck is 432.78 Kg

8 0
2 years ago
Other questions:
  • A camera lens focuses on an object 75.0 cm from the lensThe image forms 3.50 cm behind the lens. What is the magnification of th
    10·1 answer
  • Wave A has a longer wavelength than wave B, but their amplitudes are the same. Which carries more energy?
    8·2 answers
  • When the moon orbits the Earth, it has velocity. Inertia would make the moon continue in a straight line instead of orbiting at
    9·1 answer
  • What quantity is represented by the slope of the graph?
    10·1 answer
  • 26500 in scientific notation
    13·2 answers
  • ListenA person on a ledge throws a ball vertically downward, striking the ground below the ledge with 200 joules of kinetic ener
    11·1 answer
  • (a)
    15·1 answer
  • Someone pls answer! i will give u brainliest
    10·2 answers
  • Sara is riding her bike down the road at 35 km/hr. She starts to peddle faster as she
    12·1 answer
  • Jonah is applying to be the editor of the school newspaper. In his interview he's asked why he believes he's the best person for
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!