Answer:
=9.72 m/s
Explanation:
From the Newton's laws of motion;
x=2(v²cos∅sin∅)/g
Using geometry we see that 2 cos∅sin∅ = sin 2∅
Therefore, x= (v²sin 2∅)g, where v is the take off speed x the range and ∅ the launch angle.
Making v the subject of the formula we obtain the following equation.
v=√{xg /(sin 2∅)}
x=7.80
∅=27.0
v=√{7.8×9.8/sin(27×2)}
v=√94.485
v=9.72 m/s
The angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
<h3>
</h3><h3>What is angular speed ?</h3>
The rate of change of angular displacement is defined as angular speed. It is stated as follows:
ω = θ t
Where,
θ is the angle of rotation,
t is the time
ω is the angular velocity
The torque is found as;l

If the force is acting on the rod from the three point is the same, the value of the torque is depends upon the radius or the perpendicular distance.
The perpendicular distance of the right force is grater. Hence, the force acting on the right side is more, and the rod will rotate clockwise.
Both the forces are acting downwards. Thus, the resultant force is the less due to which the speed is increasing.
Hence, the angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
To learn more about the angular speed, refer to the link;
brainly.com/question/9684874
#SPJ1
Explanation:
hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).
Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz