2nd and third laws of energy
Newton's first law of motion best illustrates the principle of inertia<span />
Answer:
22425 J
Explanation:
From the question,
Applying
Q = cm(t₂-t₁).................. Equation 1
Where Q = Thermal Energy, c = specific heat capacity of aluminium, m = mass of aluminium, t₂ = Final Temperature, t₁ = Initial Temperature.
Given: c = 897 J/kg.K, m = 1.0 kg, t₁ = 50 °C, t₂ = 25 °C (The final temperature is reduced by half)
Substitute these values into equation 1
Q = 897×1×(25-50)
Q = 897×(-25)
Q = -22425 J
Hence the thermal energy lost by the aluminium is 22425 J
Answer:
1.7 seconds
Explanation:
To clear the intersection, the total distance to be covered = 59.7 + 25 =84.7m
first we need to find the initial speed to just enter the intersection by using the third equation of motion
v^2 - u^2 = 2*a*s
45^2 - u^2 = 2 * -5.7 * 84.7
u^2 = 45^2 +965.58
u^2 = 2990.58
u = 54.7 m/s
Now for time we apply the first equation of motion
v-u =a * t
t = (v-u)/a = (45 - 54.7)/-5.7 = 1.7seconds