Answer:
Block A
Explanation:
Block A will float higher in the water compared to the second Block.
The density of water is 1g/cm³.
According to the principle of floatation "an object that floats in a liquid will displace equal amount of fluid to the weight of the object".
A body will become more submerged in water if it has more density because density is the mass per volume of body.
An object with a higher density than another will sink in the liquid of the one with lesser density.
- Object A has lesser density and will float higher up and displace very little water.
- Object B has higher density and will be more submerged.
Answer:
D
Explanation:
We know the formula for Work to be:
W = f * d
Where W is work done
f is force
d is the distance
A)
Work = 50
Distance = 50
So, Force is:
Force = 50/50 = 1
B)
Work = 400
Distance = 80
Force = 400/80 = 5
C)
Work = 365
Distance = 73
Force = 365/73 = 5
D)
Work = 144
Distance = 16
Force = 144/16 = 9
Hence, D is the situation in which the force applied is the greatest.
Because you see yourself the opposite way in a mirror. So yes your “seeing” yourself but not how everyone else sees you.
The mass of the astronaut is still 65 kilograms. Mass is constant or doesn't change no matter where you are.
Answer:
the first one
Explanation: the first one because they were all on two different continents so when they seperated half of the species went on one continent and the other half went onto another one