The system's tension is 616 N and acceleration is 5.6 
<u>Explanation:</u>
From newton’s second law of motion which state that net force acting on a body is product of mass of a body and acceleration of a body which is given as,

Where,
is net force acting on body
is mass of body
a is acceleration of body
Given values
Table mass (m) = 30 kg
Hanging mass (m) = 40 kg

Put the value for m = hanging mass = 40 kg and
, we get

The tension in the ropes, 
Here, m as hanging mass
T = tension, N or 
m = mass, kg
g = gravitational force, 
a = acceleration, 

I have the same physics class , so the answer would be 0.6
Answer:
<h2>Force due to biceps is given as</h2><h2>

</h2>
Explanation:
For balancing the force we know that
Torque due to weight hold on his hand = torque due to force applied by biceps
So here we will have

so we have

