The FREQUENCY of light remains unchanged once it leaves the source.
Heck yeah i'll follow!!!!!!
Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:


To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,
The circumference of the planet is,

Under the mathematical value the radius would be



Using second equation of motion

Replacing the values given,

Rearranging and solving for 'a' we have,

Using the value of acceleration due to gravity from Newton's law we have that

Here,
r = Radius of the planet
G = Gravitational Universal constant
M = Mass of the Planet


Therefore the mass of this planet is 