Answer: The increase in temperature of the nail after the three blows is 8.0636 Kelvins. The correct option is (d).
Explanation:
Kinetic energy of the hammer ,K.E.=
Half of the kinetic energy of the hammer is transformed into heat in the nail.
Energy transferred to the nail in one blow =
Total energy transferred after 3 blows,Q =
Mass of the nail = 15 g = 0.015 kg
Change in temperature =
Specif heat of the steel = c = 448 J/kg K
The increase in temperature of the nail after the three blows is 8.1 Kelvins.Hence, correct option is (d).
Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
هاذغهعفذعذهفذهذهغذهفهذهفذهف
Answer:
As 28m/s = 28m/s
Explanation:
r = the radius of the curve
m = the mass of the car
μ = the coefficient of kinetic friction
N = normal reaction
When rounding the curve, the centripetal acceleration is
therefore
As 28m/s = 28m/s
Answer:
hhhhhhhhhhhhhhhhhhhhh
Explanation:
sjdnxjwodj1oeixjwkw9dijwqoisjd1
sjssusidej