1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
7

g Suppose that you randomly selected 20 adults. If 18% of the population smoke, a) Using the Range Rule of Thumb, what is the mi

nimum number of usual smokers we can expect to get out of 20 adults
Mathematics
1 answer:
Gala2k [10]3 years ago
6 0

Answer:

0.16

Step-by-step explanation:

The computation of the minimum no of usual smokers expected to get out of 20 adults is shown below:

Here the standard deviation is

= \sqrt{npq} \\\\= \sqrt{20\times 0.18 \times (1 - 0.18)}\\\\= \sqrt{20\times 0.18\times 0.82}\\\\= \sqrt{2.952}

= 1.72

Now the minimum no of smokers is

= np - 2\times 1.72\\= 20 \times 0.18 - 3.44\\\\= 0.16

You might be interested in
Hey i am not smart but what is <br> <img src="https://tex.z-dn.net/?f=83%5Cfrac%7B1%7D%7B3%7D%20minus%20%5Cfrac%7B2%7D%7B3%7D" i
Ray Of Light [21]
It would be 82 2/3 since 1/3 minis 2/3 would equal -1/3 you subtract that from 83 and get 82 2/3
6 0
3 years ago
Read 2 more answers
5. PLEASE HELP
lana66690 [7]

Answer:

The potential energy of the ball having 2kg mass would be 392 J

Step-by-step explanation:

I am assuming the ball has a mass of 2 kg, as you have not mentioned the mass of a ball.

Considering the formula for calculating the gravitational potential energy

G.P.E\:=\:m.g.h

As

m = 2 kg

Acceleration of gravity = g = 9.8 ms^{-2}

As the ball is on the height = h = 20 meters

So,

G.P.E\:=\:(2)(9.8)(20)

G.P.E\:=392 J

Therefore, the potential energy of the ball = 392 J

Keywords: potential energy, Gravitation potential energy

Learn more potential energy from brainly.com/question/14022793

#learnwithBrainly

5 0
3 years ago
Find the minimum and maximum possible areas of a rectangle measuring 6 km by 11 km.
ExtremeBDS [4]
Assuming your numbers are rounded to the nearest km, the minimum area will be ...
  (5.5 km)·(10.5 km) = 57.75 km² . . . minimum

And the maximum area will be ...
  (6.5 km)·(11.5 km) = 74.75 km² . . . maximum

_____
When a number is rounded to 6 km as the nearest km, its value may actually be anywhere in the range 6 km ± 0.5 km. If you really want to get technical about it, the ranges of possible dimensions are [5.5, 6.5) km and [10.5, 11.5) km, and the range of possible areas is [57.75, 74.75) km².
3 0
3 years ago
g If the economy improves, a certain stock stock will have a return of 23.4 percent. If the economy declines, the stock will hav
dusya [7]

Answer:

E(X) = 23.4* 0.67 -11.9*0.33= 11.759 \%

Now we can find the second central moment with this formula:

E(X^2) = \sum_{i=1}^n X^2_i P(X_i)

And replacing we got:

E(X^2) = (23.4)^2* 0.67 +(-11.9)^2*0.33= 413.5965

And the variance is given by:

Var(X) = E(X^2) - [E(X)]^2

And replacing we got:

Var(X) = 413.5965 -(11.759)^2 =275.5105

And finally the deviation would be:

Sd(X) = \sqrt{275.5105}= 16.599 \%

Step-by-step explanation:

We can define the random variable of interest X as the return from a stock and we know the following conditions:

X_1 = 23.4 , P(X_1) =0.67 represent the result if the economy improves

X_2 = -11.9 , P(X_1) =0.33 represent the result if we have a recession

We want to find the standard deviation for the returns on the stock. We need to begin finding the mean with this formula:

E(X) = \sum_{i=1}^n X_i P(X_i)

And replacing the data given we got:

E(X) = 23.4* 0.67 -11.9*0.33= 11.759 \%

Now we can find the second central moment with this formula:

E(X^2) = \sum_{i=1}^n X^2_i P(X_i)

And replacing we got:

E(X^2) = (23.4)^2* 0.67 +(-11.9)^2*0.33= 413.5965

And the variance is given by:

Var(X) = E(X^2) - [E(X)]^2

And replacing we got:

Var(X) = 413.5965 -(11.759)^2 =275.5105

And finally the deviation would be:

Sd(X) = \sqrt{275.5105}= 16.599 \%

7 0
3 years ago
A number is selected at random from the set {2, 3, 4,. 10}. Which event, by definition, covers the entire sample space of this e
Citrus2011 [14]

The event by definition that covers the entire sample space of the experiment is;

<em><u>The number is even or less than 12</u></em>

We are given the numbers in the set as;

set {2, 3, 4,... 10}.

Now, the numbers in the set are even and odd numbers from 2 to 10 with 10 being the highest and 2 being the lowest.

Thus the event that covers this sample space is simply a set of numbers that are even or less than 12.

Read more about sample space of set at; brainly.com/question/18866708

6 0
3 years ago
Other questions:
  • What’s the answers to all on the left side<br> I really don’t understand them
    10·1 answer
  • 6x+3(4x-2)=5(2x-8) the answer is -17/4 but can someone explain how to get that answer? plz help lol​
    10·1 answer
  • Three friends were comparing scores on a social studies test Henry got a score of 7/8 Christian got a score of 75% in McKenzie g
    8·1 answer
  • Identify the graph of the equation. What is the angle of rotation for the equation?
    8·1 answer
  • he left and right page numbers of an open book are two consecutive integers whose sum is 407.  Find these page numbers.
    5·1 answer
  • WILL GIVE BRAINLIEST *NO LINKS*
    13·1 answer
  • I need help plzzzz!!!!!!!!:)
    15·2 answers
  • Nala is getting new tile in her kitchen. Her kitchen is in the shape of a rectangle with a length of 9 feet and a width of 15 fe
    12·1 answer
  • Mr. Johnson orders 250 keychains printed with his athletic team’s logo and 500 pencils printed with their Web address. Write an
    14·2 answers
  • What is 75.6 divided by 4
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!