Arrhenius Bases, so that other compounds that have the hydroxyl group (OH⁻)
hope this helps!
Answer:
The solution's new volume is 1.68 L
Explanation:
Dilution is the procedure to prepare a less concentrated solution from a more concentrated one, and simply consists of adding more solvent. So, in a dilution the amount of solute does not vary, but the volume of the solvent varies.
In summary, a dilution is a lower concentration solution than the original.
The way to do the calculations in a dilution is through the expression:
Ci*Vi=Cf*Vf
where C and V are concentration and volume, respectively; and the i and f subscripts indicate initial and final respectively.
In this case, being:
- Ci= 7 M
- Vi= 0.60 L
- Cf= 2.5 M
- Vf=?
Replacing:
7 M*0.60 L= 2.5 M* Vf
Solving:

Vf= 1.68 L
<u><em>The solution's new volume is 1.68 L</em></u>
Special properties of water are its high heat capacity and heat of vaporization, its ability to dissolve polar molecules, its cohesive and adhesive properties, and its dissociation into ions that leads to generating pH. Understanding these characteristics of water helps to elucidate its importance in maintaining life.
<u><em>The variable quantities are expressed by the ideal gas law equation are; </em></u>
<u><em>pressure, volume, temperature, number of moles</em></u>
<u><em /></u>
This question is simply based on defining the ideal gas law.
- Now, A gas is considered to ideal if its particles are so far from each other in such a manner that they don't exhibit any forces of attraction between themselves. Now, in real life this is not possible but under high temperatures and pressure, we can have something close to it and that's why ideal gas laws are very important.
- This law states that states that the pressure, temperature, number of moles and volume of a gas are related to each other by the formula;
PV = nRT
Where;
P is pressure
V is volume
n is number of moles
T is temperature
R is ideal gas constant (This is fixed and not variable)
The variable quantities are expressed by the ideal gas law equation are;
<em>pressure, volume, temperature, number of moles</em>
Read more at; brainly.in/question/5212853
Answer is 128.892 g.
moles (mol) = mass (g) / molar mass (g/mol)
According to the given data,
moles = 4.60 mol
mass = ?
molar mass = 28.02 g/mol
By substitution,
4.60 mol = mass / (28.02 g/mol)
mass = 4.60 mol x 28.02 g/mol
mass = 128.892 g
Hence, mass of 4.60 mol of N₂ is 128.892 g.