Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
According to the question
Terrestrial Planets:
They belongs to a class of planets that are like the earth
Geological destiny :
Geology is biological destiny: Whatever minerals land or are deposited in a place determine what or who can make a living there millions of years later
Based on all we know about the terrestrial worlds, what single factor appears to play the most important role in a terrestrial planet's geological destiny
i.e
The size of terrestrial planet is one of the factors to play the most important role in a terrestrial planet's geological destiny
which determines how long the planet can retain internal heat, which drives geological activity because Smaller worlds cool off faster and harden earlier .
Hence, Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
To know more about terrestrial here:
brainly.com/question/13490379
#SPJ4
The correct answer D: all of the above
Explanation:
... in every interaction, there is a pair of forces acting on the two interacting objects. The size of the force on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.
speed increases with temp maybe
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV