The triarchic theory of intelligence<span> was formulated by </span>Robert J. Sternberg<span>, a prominent figure in research of human </span>intelligence<span>. The theory by itself was among the first to go against the </span>psychometric<span> approach to intelligence and take a more </span>cognitive approach<span>. The three meta components are also called triarchic components. These are the triarchic theory of human intelligence.
</span>1.
Analytical - Analytical Intelligence similar to the standard psychometric definition of intelligence e.g. as measured by Academic problem solving: analogies and puzzles, and corresponds to his earlier componential intelligence. Sternberg considers this reflects how an individual relates to his internal world.
Sternberg believes that Analytical Intelligence (Academic problem-solving skills) is based on the joint operations of metacomponents and performance components and knowledge acquisition components of intelligence
2.
Practical - Practical Intelligence: this involves the ability to grasp, understand and deal with everyday tasks. This is the Contextual aspect of intelligence and reflects how the individual relates to the external world about him or her.
<span>Sternberg states that Intelligence is: </span>"Purposive adaptation to, shaping of, and selection of real-world environments relevant to one's life" (Sternberg, 1984, p.271)
3.
Creative - Creative Intelligence: this involves insights, synthesis and the ability to react to novel situations and stimuli. This he considers the Experiential aspect of intelligence and reflects how an individual connects the internal world to external reality.
<span>Sternberg </span>considers the Creative facet to consist of the ability which allows people to think creatively and that which allows people to adjust creatively and effectively to new situations.
<span>Sternberg believes that more intelligent individuals will also move from consciously learning in a novel situation to automating the new learning so that they can attend to other tasks.</span>
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
a). Water is still H₂O after it freezes.
b). Ice is still H₂O after it melts.
c). Wire is still Cu when it's bent.
d). Paper combines with the O₂ in the air, and turns into
a lot of new compounds when it burns.
Answer:
The modern instruments or we can say the different levels of telescopes are used to explore and study the distant galaxies. i.e the Hubble telescope is out there providing the data regarding the different properties of the celestial entities which in other case is not visible to the human naked eye.
Explanation:
- Scientists and research workers are in constant search for more answers as they explore the universe and implement the laws of physics on the celestial entities. But, most of the objects inside the universe are not visible to human naked eye, as they are far from sight and thus more advanced form of instruments like the x-ray, optical, and light telescopes are used to determine the different properties of the celestial entities inside the universe.
- As, these telescopes includes the most recent "Hubble telescope", which is out there inside the space to explore the universe and more over the galaxies by subjecting them with x-rays and then provide us with a very rough but valid results to study the distant galaxies.