Answer:
The solved problem is in the photo. Hope it helps.
The angular velocity, ω=
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s
Answer:
Torque on the rocket will be 1.11475 N -m
Explanation:
We have given that muscles generate a force of 45.5 N
So force F = 45.5 N
This force acts on the is acting on the effective lever arm of 2.45 cm
So length of the lever arm d = 2.45 cm = 0.0245 m
We have to find torque
We know that torque is given by
So torque on the rocket will be 1.11475 N -m
Answer:
So I never really knew you
God, I really tried to
Blindsided, addicted
Felt we could really do this
But really I was foolish
Hindsight, it's obvious
Explanation:
Answer:
B. Axial stress divided by axial strain
Explanation:
Elasticity:
It is the tendency of an object to deform along the axis when an opposing force is applied without facing permanent change in shape.
Plasticity:
When an object crosses the elasticity limit, it enters plasticity where the change due to stress is permanent and the object might even break.
Yield strength:
Yield strength is the point of maximum bearable stress that indicates the limit of elasticity.
Our case:
As the stress applied is less than the yield strength, the rod is still in the elasticity state and its modulus can be calculated.
Modulus of Elasticity = Stress along axis/Ratio of change in length to original length
Axial strain is basically the ratio of change in length to original length.
So, Modulus of Elasticity = Axial Stress/ Axial Strain