Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
They are held together because of Strong Nuclear Force.
Answer: The thermal energy transfer is When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along.
Explanation: heat transfer is called convection. hopefully this was helpful.
That's a molecule of the substance. You can break the molecule down further, into the atoms that make it up, but those don't have the properties of the original 'compound'.
Here's an example:
-- Sodium is a soft, slippery metal, that explodes when water touches it.
-- Chlorine is a poisonous green gas.
When an atom of Sodium and an atom of Chlorine combine, they make one molecule of a substance called "Sodium Chloride". That's SALT ! It isn't green, it isn't a gas, it isn't poisonous, it isn't soft and slippery, and it doesn't explode when water touches it.
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>