Part (a)
There are 7 red out of 7+3 = 10 total
<h3>Answer: 7/10</h3>
==========================================================
Part (b)
We have 3 green out of 10 total
<h3>Answer: 3/10</h3>
==========================================================
Part (c)
3/10 is the probability of getting green on any selection. This is because we put the first selection back (or it is replaced with an identical copy)
So (3/10)*(3/10) = 9/100 is the probability of getting two green in a row.
<h3>Answer: 9/100</h3>
==========================================================
Part (d)
Similar to part (c) we have 7/10 as the probability of getting red on each independent selection.
(7/10)*(7/10) = 49/100
<h3>Answer: 49/100</h3>
==========================================================
Part (e)
7/10 is the probability of getting red and 3/10 is the probability of getting green. Each selection is independent of any others.
(7/10)*(3/10) = 21/100
<h3>Answer: 21/100</h3>
==========================================================
Part (f)
We have the exact same set up as part (e). Notice how (7/10)*(3/10) is the same as (3/10)*(7/10).
<h3>Answer: 21/100</h3>
Answer:
i think you'll need 1 foot 6 inches of wood
Step-by-step explanation:
The answer should be that 6250 farms are owned by men.
Answer:
For this case the p value calculated is higher than the significance level used of 0.05 so then we have enough evidence to FAIL to reject the null hypothesis and the best conclusion for this case would be:
a) do not reject the null hypothesis and conclude that the mean IQ is not greater than 100
Step-by-step explanation:
Information given
We want to verify if he mean IQ of employees in an organization is greater than 100 , the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
The statistic for this case is given by:
(1)
The statistic calculated for this case
The degrees of freedom are given by:
Now we can find the p value using tha laternative hypothesis and we got:
For this case the p value calculated is higher than the significance level used of 0.05 so then we have enough evidence to FAIL to reject the null hypothesis and the best conclusion for this case would be:
a) do not reject the null hypothesis and conclude that the mean IQ is not greater than 100