Answer: silicon Si, Germanium GE
Explanation:
Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.
Out of the following given choice:
A. The increase in
the airspace occupied by vinegar molecules
B. The chemical reaction with nerves, which is slower than
other sensory processes
C. Attractive forces between the air and vinegar molecules
D. Random collisions between the air and vinegar molecules.
<span>The answer is
D. While the particles may be
moving at high velocities even at room
temperatures, the delay is due to the numerous collisions
between the vinegar molecules and the air molecules.This changes the vinegar’s
molecules directions from straight lines to random unpredictable paths</span>
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.