1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
13

Beads are dropped to create a conical pile such that the ratio of its radius to the height of the pile is constant at 2:3 and th

e volume is increasing at a rate of 5 cm^3/s. Find the rate of change of height at h = 15cm.
Mathematics
1 answer:
pav-90 [236]3 years ago
3 0

Answer:

\displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Equality Properties

<u>Geometry</u>

  • Volume of a Cone: \displaystyle V = \frac{1}{3} \pi r^2h

<u>Calculus</u>

Derivatives

Derivative Notation

Differentiating with respect to time

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{r}{h} = \frac{2}{3} \\\frac{dV}{dt} = 5 \ cm^3/s\\h = 15 \ cm<u />

<u />

<u>Step 2: Rewrite Cone Volume Formula</u>

<em>Find the volume of the cone with respect to height.</em>

  1. Define ratio:                         \displaystyle \frac{r}{h} = \frac{2}{3}
  2. Isolate <em>r</em>:                               \displaystyle r = \frac{2}{3} h
  3. Substitute in <em>r</em> [VC]:             \displaystyle V = \frac{1}{3} \pi (\frac{2}{3}h)^2h
  4. Exponents:                          \displaystyle V = \frac{1}{3} \pi (\frac{4}{9}h^2)h
  5. Multiply:                               \displaystyle V = \frac{4}{27} \pi h^3

<u>Step 3: Differentiate</u>

  1. Basic Power Rule:                                                                                          \displaystyle \frac{dV}{dt} = \frac{4}{27} \pi \cdot 3 \cdot h^{3-1} \cdot \frac{dh}{dt}
  2. Simplify:                                                                                                           \displaystyle \frac{dV}{dt} = \frac{4}{9} \pi h^{2} \frac{dh}{dt}

<u>Step 4: Find Height Rate</u>

<em>Find dh/dt.</em>

  1. Substitute in known variables:                                                                      \displaystyle 5 \ cm^3/s = \frac{4}{9} \pi (15 \ cm)^{2} \frac{dh}{dt}
  2. Isolate <em>dh/dt</em>:                                                                                                   \displaystyle \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} } = \frac{dh}{dt}
  3. Rewrite:                                                                                                           \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (15 \ cm)^{2} }
  4. Evaluate Exponents:                                                                                      \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{\frac{4}{9} \pi (225 \ cm^2) }
  5. Evaluate Multiplication:                                                                                  \displaystyle \frac{dh}{dt} = \frac{5 \ cm^3/s}{100 \pi cm^2 }
  6. Simplify:                                                                                                          \displaystyle \frac{dh}{dt} = \frac{1}{20 \pi} \ cm/s
You might be interested in
Make the indicated trigonometric substitution in the given algebraic expression and simplify(x-25)/x = Sin y0
Strike441 [17]

Answer:

x = 25 /(1 − sin(y )) and y ≠ π/2  +2πn

Step-by-step explanation:

Let's solve and simplify for x,

(x − 25 )/ x  = sin(y)

Let's multiply both sides by x

((x − 25 )/x) *x= sin(y)*x

Then,

x − 25 = sin(y) * x

Let's add 25 to both sides

x − 25 + 25 = sin(y) * x + 25

If simplify again,

x = sin(y) * x + 25

Then we need subtract sin y x from both sides

x − sin(y) * x = sin (y)* x + 25 − sin (y)* x

It will equal:

x − sin (y)* x = 25

Factor x−sin(y) x: x(1−sin(y) ), then we get:

x (1 − sin(y)) = 25

Finally we need divide both sides by 1 − sin(y) ; y ≠π /2 + 2πn

And it will give us this equation:

x = 25 /(1 − sin(y )) and y ≠ π/2  +2πn

3 0
3 years ago
Need help with statistics please answer!
Crazy boy [7]

Answer:

The city with the greater population density is <u>Chicago</u> because <u>2,700,000</u> > <u>440,000</u>

7 0
3 years ago
What is the area of the triangle? A. 26.91 cm² B. 28.98 cm² C. 53.82 cm² D. 57.96 cm²
Masteriza [31]
A= hᵇb
       2
hope that helped at all.

8 0
3 years ago
-8x - 4y = -24 <br><br> -3x + 7y =25<br><br>Solve.
andre [41]

Answer:

I need the right problem.

Please read the whole thing.

Step-by-step explanation:

Hi. For this problem you are going to combine like terms.

For these problems, if you need any more help, you can search up algebra calculators on google.

I tried the problem and it said that there was too many equal signs. So, I would check to see if you asked this question correctly. I would ask your teacher.

Stay safe during these times,

The guy who tired to answer your question

5 0
3 years ago
Read 2 more answers
3x +4 and =-23 x=3and +1
Hunter-Best [27]

Answer:

Im not sure if you're asking us to solve the function operation but if you are heres what I got:

3x + 4 and = -23 =

x = 3 =

1 =

Sorry if this is wrong

6 0
3 years ago
Other questions:
  • Pls help me with this question
    8·1 answer
  • Evaluate -3m-2e if m= 6 and e= 1.
    15·2 answers
  • Please help me
    14·2 answers
  • Evaluate the following expression.
    10·1 answer
  • The train station runs to fast and gains 6 minutes every 5 days
    7·1 answer
  • 5/7=12/y solve for y.
    14·2 answers
  • Help pls!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·1 answer
  • Which of the following statements is always true?
    6·1 answer
  • Write the following in fraction form.<br> 24 hours per day
    15·1 answer
  • 2w+w^3-1/2w^2 for w=2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!