Answer: East of North
Explanation:
We have the following data:
Speed of the wind from East to West:
Speed of the bee relative to the air:
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):
Clearing :
From the given information in the question, the correct option is Option 1: 14 cm.
A non-stretched elastic spring has a conserved potential energy which gives it the ability to perform work. The elastic potential energy can be expressed as:
PE = k
Where PE is the energy, k is the spring constant and x is extension.
i. Given that: PE = 10 J and x = 10 cm, then;
PE = k
10 = k
20 = 100k
k = 0.2 J/cm
ii. To determine how far the spring is needed to be stretched, given that PE = 20 J.
PE = k
20 = (0.2)
40 = 0.2
= 200
x =
= 14.1421
x = 14.14 cm
So that;
x is approximately 14.00 cm.
Thus, the spring need to be stretched to 14.00 cm to give the spring 20 J of elastic potential energy.
For more information, check at: brainly.com/question/1352053.
We have . So, .
. So .
Thus we can convert the units of the given quantity.
That is,
.
The quantity is converted to the required units.
For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,
1/2y = L, where L = length of the string, y = wavelength.
Therefore,
y = 2L = 2*0.75 =1.5 m
Additionally,
y = v/f Where v = wave speed, and f = ferquncy
Then,
v = y*f = 1.5*220 = 330 m/s