Answer:
2
Step-by-step explanation:
Substitute all the variables in.

Use the order of operations to solve.
3-5+4
2
An example of a trig function that includes multiple transformations and how it is different from the standard trig function is; As detailed below
<h3>
How to interpret trigonometric functions in transformations?</h3>
An example of a trigonometric function that includes multiple transformations is; f(x) = 3tan(x - 4) + 3
This is different from the standard function, f(x) = tan x because it has a vertical stretch of 3 units and a horizontal translation to the right by 4 units, and a vertical translation upwards by 3.
Another way to look at it is by;
Let us use the function f(x) = sin x.
Thus, the new function would be written as;
g(x) = sin (x - π/2), and this gives us;
g(x) = sin x cos π/2 - (cos x sin π/2) = -cos x
This will make a graph by shifting the graph of sin x π/2 units to the right side.
Now, shifting the graph of sin xπ/2 units to the left gives;
h(x) = sin (x + π/2/2)
Read more about Trigonometric Functions at; brainly.com/question/4437914
#SPJ1
Answer:
![\sqrt[3]{x^{10} }[\tex]Step-by-step explanation:Exponential Rules:[tex]x^{a} + x^{b} = x^{a + b}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExponential%20Rules%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Dx%5E%7Ba%7D%20%2B%20x%5E%7Bb%7D%20%3D%20x%5E%7Ba%20%2B%20b%7D)
![\sqrt[b]{x^{a} } =x^{\frac{a}{b} } Original Equation:[tex]\sqrt[3]{x^{10} } = x^{\frac{10}{3} } Answer:[tex]\sqrt[3]{x^{10} }[\tex]Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bb%5D%7Bx%5E%7Ba%7D%20%7D%20%3Dx%5E%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EOriginal%20Equation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%20%20%3D%20x%5E%7B%5Cfrac%7B10%7D%7B3%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3EConvert%20the%20cubed%20root%20to%20a%20power.%20Cubed%20root%20%3D%20%5Btex%5D%5Cfrac%7B1%7D%7B3%7D)

Convert them, so they have a common denominator - 


[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]
Answer:
Step-by-step explanation:
Integer