Answer:
1. How many ATOMS of boron are present in 2.20 moles of boron trifluoride? atoms of boron.
2. How many MOLES of fluorine are present in of boron trifluoride? moles of fluorine.
Explanation:
The molecular formula of boron trifluoride is
.
So, one mole of boron trifluoride has one mole of boron atoms.
1. The number of boron atoms in 2.20 moles of boron trifluoride is 2.20 moles.
The number of atoms in 2.20 moles of boron is:
One mole of boron has ----
atoms.
Then, 2.20 moles of boron has
-
2. Calculate the number of moles of BF3 in 5.35*1022 molecules.

One mole of boron trifluoride has three moles of fluorine atoms.
Hence, 0.0888moles of BF3 has 3x0.0888mol of fluorine atoms.
=0.266mol of fluorine atoms.
Answer: density =3.377g/cm³
Explanation:
Density =( molecular weight × effective number of atoms per unit cell) / (volume of unit cell × avogadro constant)
D= (M ×n) /(V×A)
M= 137g/mol
n= 2 (For BCC)
V=a³ , where a= 4r/√3
a= (4×222)/√3
a=512.69pm
a= 512.69×10^-10cm
V= ( 512.69×10^-10)^3
V= 1.3476×10^-22cm³
D= (137×2)/(1.3476×10^-22 × 6.02^23)
D= 3.377g/cm³
Therefore the density of barium is 3.377g/cm³
Answer:
MCO3 is BaCO3
The mass of CO2 produced is 0.28g of CO2
Explanation:
The first step in solving the question is to put down the balanced reaction equations as shown in the image attached. Secondly, we obtain the relative number of moles acid and base as mentioned in the question. The balanced neutralization reaction equation is used to obtain the number of moles of excess acid involved in the neutralization reaction.
This is then subtracted from the total number of moles acid to give the number of moles of acid that reacted with MCO3. From here, the molar mass of MCO3 and identity of M can be found. Hence the mass of CO2 produced is calculated as shown.
Explanation:
The visible light is a part of the electromagnetic spectrum with the range of 400nm to 700nm.
Visible light is made up of all the colors we can perceive.
- The electromagnetic spectrum is a series of radiation.
- The most energetic have the highest frequency and lowest wavelength.
- The visible light is part of the spectrum.
- It is the part of the spectrum that allows for sight.