Answer:
at the speed of light (
)
Explanation:
The second postulate of the theory of the special relativity from Einstein states that:
"The speed of light in free space has the same value c in all inertial frames of reference, where
"
This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.
In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of
.
The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
<u>Explanation:</u>
Given,
Temperature, T = 0°C
Initial mass, Mi = 62kg
Speed, s = 5.48m/s
Distance, x = 26.8m
Friction is present.
Mass of ice melted = ?
We know,
The amount of energy required for the melting of ice is exactly equal to the initial kinetic energy of the block of ice
and

Therefore, 
KE = 930.94 Joules
Ice melting lateral heat is 334 kJ/kg = 334000 J/kg.
Therefore, the melted mass of the ice = 930.94 / 334000 = 0.00278 kg = 2.78 g.
Thus, The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
I think the correct answer from the choices listed above is option A. The process of conduction is described by the heat energy is transferred from the land to the air by direct contact. Conduction is the process of heat transfer that happens through the collisions between molecules.
<span>All of the following were barriers to minority participation in early psychology except school desegregation. The correct option among all the options that are given in the question is the first option or option "A". I hope that this is the answer that you were looking for and the answer has come to your great help.</span>