We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

Where,
F_D = Drag Force
= Drag coefficient
A = Area
= Density
V = Velocity
Our values are given by,
(That is proper of a cone-shape)



Part A ) Replacing our values,


Part B ) To find the torque we apply the equation as follow,



The complete statement is
As a solid element melts, the atoms become more separated and they have less attraction for one another.
Let me explain to you how this happens. In solid phase. Its molecules are arranged in a very compact manner that is why it takes a definite shape and volume. When it is heated, the kinetic energy of the molecules increases. This is characterized by more frequent collisions. The rise in temperature causes the molecules to move rapidly by vibrating. When it reaches an amount of energy that causes the solid to change phase, this is called the latent energy. The molecules break their form and move farther away from each other until it resembles that of a liquid melting. At this point, the molecules would have lesser attraction because of the distance between them.
Answer: 10.3m/s
Explanation:
In theory and for a constant velocity the physics expression states that:
Eq(1): distance = velocity times time <=> d = v*t for v=constant.
If we solve Eq (1) for the velocity (v) we obtain:
Eq(2): velocity = distance divided by time <=> v = d/t
Substituting the known values for t=15s and d=155m we get:
v = 155 / 15 <=> v = 10.3
Answer:
B
Explanation:
It's Scientifically proven