1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
10

If each of the three rotor helicopter blades is 3.50 m long and has a mass of 120 kg , calculate the moment of inertia of the th

ree rotor blades about the axis of rotation.
Physics
1 answer:
devlian [24]3 years ago
7 0

Answer:

1470kgm²

Explanation:

The formula for expressing the moment of inertial is expressed as;

I = 1/3mr²

m is the mass of the body

r is the radius

Since there are three rotor blades, the moment of inertia will be;

I = 3(1/3mr²)

I = mr²

Given

m = 120kg

r = 3.50m

Required

Moment of inertia

Substitute the given values and get I

I = 120(3.50)²

I = 120(12.25)

I = 1470kgm²

Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²

You might be interested in
Octane (C8H18) is burned with dry air. The volumetric analysis of the products on a dry basis is as below. (Fig. 15–12) Determin
Vesna [10]

Answer:

a. Air fuel Ratio = 19.76 kg air/kg fuel

b. % Theoretical air used = 131%

c. Amount of H2O that condenses as the products are cooled to 25°C at 100kPa = 6.59 kmol

Explanation:

7 0
3 years ago
Which statement is true? *
never [62]

The last paragraph is the correct statement.  Please don't make me type it all out.

6 0
3 years ago
Read 2 more answers
During a rockslide, a 670 kg rock slides from rest down a hillside that is 740 m along the slope and 240 m high. The coefficient
ElenaW [278]

a) 1.58\cdot 10^6 J

b) 1.15\cdot 10^6 J

c) 0.43\cdot 10^6 J

d) 35.8 m/s

Explanation:

a)

The gravitational potential energy of an object is the energy possessed by the object due to its location with respect to the ground.

It is given by:

U=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height of the object, relative to a reference level

Here, the reference level is taken at the bottom of the hill (where the potential energy is zero).

So, we have:

m = 670 kg is the mass of the rock

g=9.8 m/s^2

h = 240 m is the initial height of the rock

So, the potential energy of the rock just before the slide is

U=(670)(9.8)(240)=1.58\cdot 10^6 J

b)

The energy transferred to thermal energy during the slide is equal to the work done by friction, which is:

W=F_f d

where

F_f is the force of friction

d = 740 m is the displacement of the rock along the ramp

The force of friction is given by:

F_f=-\mu mg cos \theta

where

\mu=0.25 is the coefficient of friction

m = 670 kg is the mass of the rock

\theta is the angle of the ramp

Since we know the lenght of the ramp (d = 740 m) and the height (h = 240 m), we can find the angle:

\theta=sin^{-1}(\frac{h}{d})=sin^{-1}(\frac{240}{740})=18.9^{\circ}

Therefore, the work done by friction is:

W=-\mu m g cos \theta d =-(0.25)(670)(9.8)(cos 18.9^{\circ})(740)=-1.15\cdot 10^6 J

So, the energy transferred to thermal energy is 1.15\cdot 10^6 J.

c)

According to the law of conservation of energy, the kinetic energy of the rock as it reaches the bottom of the hill will be equal to the initial potential energy (at the top) minus the energy transformed into thermal energy.

Therefore, we have:

K_f = U_i -E_t

where here we have:

U_i=1.58\cdot 10^6 J is the potential energy of the rock at the top of the hill

E_t=1.15\cdot 10^6 J is the energy converted into thermal energy

Substituting, we find

K_f=1.58\cdot 10^6-1.15\cdot 10^6=0.43\cdot 10^6 J

So, this is the kinetic energy of the rock at the bottom of the hill.

d)

The kinetic energy of the rock at the bottom of the hill can be rewritten as

K_f=\frac{1}{2}mv^2

where

m is the mass of the rock

v is its final speed

In this problem, we have:

K_f=0.43\cdot 10^6 J is the final kinetic energy of the hill

m = 670 kg is the mass of the rock

Therefore, the final speed of the rock is:

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(0.43\cdot 10^6)}{670}}=35.8 m/s

7 0
3 years ago
A soccer ball is kicked with an initial horizontal velocity of 12 m/s and an initial vertical velocity of 19 m/s. 1 what is the
alex41 [277]
22.4722050542442 maybe I am not completely sure
5 0
3 years ago
What minimum speed must the block have at the base of the 70 m hill to pass over the pit at the far (right-hand) side of that hi
Drupady [299]

Answer:

initial velocity is v = 4.95 m / s

Explanation:

To solve this exercise we use the projectile launch ratios, when the block leaves the hill its speed is horizontal, let's find the time it takes to fall to the other point.

Initial vertical velocity is zero

          y = y₀ + v_{oy} t - ½ g t²

          y-y₀ = 0 -1/2 g t²

          t = \sqrt{ \frac{ 2(y_o -y)}{g} }

calculate

          t = \sqrt{ \frac{2 ( 70-50)}{9.8} }

          t = 2.02 s

with this time we can substitute in the horizontal displacement equation

          x = v₀ₓ t

          v₀ₓ = x / t

suppose that the distance between the two points is x = 10 m

          v₀ₓ = 10 / 2.02

          v₀ₓ = 4.95 m / s

initial velocity is v = 4.95 m / s

4 0
3 years ago
Other questions:
  • In 1986, the first flight around the globe without a single refueling was completed. The aircraft’s average speed was 186 km/h.
    8·1 answer
  • Which statement supports one of Dalton's contributions to the atomic theory? Select one: a. The element nitrogen is made up of c
    5·1 answer
  • If a substance was described as smooth, square, and tan, what properties are
    7·2 answers
  • A person shooting at a target from a distance of 450 metres finds that the sound of the bullet hitting the target comes 1 / 2 se
    5·1 answer
  • Turning the barrel of a 50-mm-focal-length lens on a manual-focus camera moves the lens closer to or farther from the sensor to
    5·1 answer
  • If stretching is done during the cool-down, it can help the muscle _____.
    9·1 answer
  • A heavy book is launched horizontally out a window from the first floor, a height, h, above the ground, with initial velocity, v
    7·1 answer
  • Which characteristics describe a point charge
    7·1 answer
  • A rotating, funnel-shaped column of air that extends down to the ground is called a(n) . If it does not reach the ground it is c
    8·1 answer
  • When a jet plane is cruising at high altitude, the flight attendants have more of a "hill" to climb as they walk forward along t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!