Answer:
The correct answer is "64 J".
Explanation:
The given values are:
Mass,
m = 52 kg
Velocity,
v = 6 m/s
Mechanical energy,
= 1000 J
Now,
The gravitational potential energy will be:
⇒ 




Answer:
10 :)
You have to divide the difference of speed and divide it by the time. So 100-20 would be 80, and if you divide that by 8 it would be 10.
Hope this helps.
Launch-capable countries
Order Country Satellite(s)
1 Soviet Union Sputnik 1
2 United States Explorer 1
3 France Astérix
4 Japan Ohsumi
10 more rows
Explanation:
'What is the magnitude of the force needed to stop the horses and bring the box into equilibrium?' ≈42N; according to the vectors rules.
'Where would you locate the rope to apply the force?' - in point D.
PS. zoom out the attached picture.
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m